Step |
Hyp |
Ref |
Expression |
1 |
|
pcmplfin.x |
⊢ 𝑋 = ∪ 𝐽 |
2 |
|
ssexg |
⊢ ( ( 𝑈 ⊆ 𝐽 ∧ 𝐽 ∈ Paracomp ) → 𝑈 ∈ V ) |
3 |
2
|
ancoms |
⊢ ( ( 𝐽 ∈ Paracomp ∧ 𝑈 ⊆ 𝐽 ) → 𝑈 ∈ V ) |
4 |
3
|
3adant3 |
⊢ ( ( 𝐽 ∈ Paracomp ∧ 𝑈 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑈 ) → 𝑈 ∈ V ) |
5 |
|
simp2 |
⊢ ( ( 𝐽 ∈ Paracomp ∧ 𝑈 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑈 ) → 𝑈 ⊆ 𝐽 ) |
6 |
4 5
|
elpwd |
⊢ ( ( 𝐽 ∈ Paracomp ∧ 𝑈 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑈 ) → 𝑈 ∈ 𝒫 𝐽 ) |
7 |
|
ispcmp |
⊢ ( 𝐽 ∈ Paracomp ↔ 𝐽 ∈ CovHasRef ( LocFin ‘ 𝐽 ) ) |
8 |
1
|
iscref |
⊢ ( 𝐽 ∈ CovHasRef ( LocFin ‘ 𝐽 ) ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑢 ∈ 𝒫 𝐽 ( 𝑋 = ∪ 𝑢 → ∃ 𝑣 ∈ ( 𝒫 𝐽 ∩ ( LocFin ‘ 𝐽 ) ) 𝑣 Ref 𝑢 ) ) ) |
9 |
7 8
|
bitri |
⊢ ( 𝐽 ∈ Paracomp ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑢 ∈ 𝒫 𝐽 ( 𝑋 = ∪ 𝑢 → ∃ 𝑣 ∈ ( 𝒫 𝐽 ∩ ( LocFin ‘ 𝐽 ) ) 𝑣 Ref 𝑢 ) ) ) |
10 |
9
|
simprbi |
⊢ ( 𝐽 ∈ Paracomp → ∀ 𝑢 ∈ 𝒫 𝐽 ( 𝑋 = ∪ 𝑢 → ∃ 𝑣 ∈ ( 𝒫 𝐽 ∩ ( LocFin ‘ 𝐽 ) ) 𝑣 Ref 𝑢 ) ) |
11 |
10
|
3ad2ant1 |
⊢ ( ( 𝐽 ∈ Paracomp ∧ 𝑈 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑈 ) → ∀ 𝑢 ∈ 𝒫 𝐽 ( 𝑋 = ∪ 𝑢 → ∃ 𝑣 ∈ ( 𝒫 𝐽 ∩ ( LocFin ‘ 𝐽 ) ) 𝑣 Ref 𝑢 ) ) |
12 |
|
simp3 |
⊢ ( ( 𝐽 ∈ Paracomp ∧ 𝑈 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑈 ) → 𝑋 = ∪ 𝑈 ) |
13 |
|
unieq |
⊢ ( 𝑢 = 𝑈 → ∪ 𝑢 = ∪ 𝑈 ) |
14 |
13
|
eqeq2d |
⊢ ( 𝑢 = 𝑈 → ( 𝑋 = ∪ 𝑢 ↔ 𝑋 = ∪ 𝑈 ) ) |
15 |
|
breq2 |
⊢ ( 𝑢 = 𝑈 → ( 𝑣 Ref 𝑢 ↔ 𝑣 Ref 𝑈 ) ) |
16 |
15
|
rexbidv |
⊢ ( 𝑢 = 𝑈 → ( ∃ 𝑣 ∈ ( 𝒫 𝐽 ∩ ( LocFin ‘ 𝐽 ) ) 𝑣 Ref 𝑢 ↔ ∃ 𝑣 ∈ ( 𝒫 𝐽 ∩ ( LocFin ‘ 𝐽 ) ) 𝑣 Ref 𝑈 ) ) |
17 |
14 16
|
imbi12d |
⊢ ( 𝑢 = 𝑈 → ( ( 𝑋 = ∪ 𝑢 → ∃ 𝑣 ∈ ( 𝒫 𝐽 ∩ ( LocFin ‘ 𝐽 ) ) 𝑣 Ref 𝑢 ) ↔ ( 𝑋 = ∪ 𝑈 → ∃ 𝑣 ∈ ( 𝒫 𝐽 ∩ ( LocFin ‘ 𝐽 ) ) 𝑣 Ref 𝑈 ) ) ) |
18 |
17
|
rspcv |
⊢ ( 𝑈 ∈ 𝒫 𝐽 → ( ∀ 𝑢 ∈ 𝒫 𝐽 ( 𝑋 = ∪ 𝑢 → ∃ 𝑣 ∈ ( 𝒫 𝐽 ∩ ( LocFin ‘ 𝐽 ) ) 𝑣 Ref 𝑢 ) → ( 𝑋 = ∪ 𝑈 → ∃ 𝑣 ∈ ( 𝒫 𝐽 ∩ ( LocFin ‘ 𝐽 ) ) 𝑣 Ref 𝑈 ) ) ) |
19 |
6 11 12 18
|
syl3c |
⊢ ( ( 𝐽 ∈ Paracomp ∧ 𝑈 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑈 ) → ∃ 𝑣 ∈ ( 𝒫 𝐽 ∩ ( LocFin ‘ 𝐽 ) ) 𝑣 Ref 𝑈 ) |
20 |
|
rexin |
⊢ ( ∃ 𝑣 ∈ ( 𝒫 𝐽 ∩ ( LocFin ‘ 𝐽 ) ) 𝑣 Ref 𝑈 ↔ ∃ 𝑣 ∈ 𝒫 𝐽 ( 𝑣 ∈ ( LocFin ‘ 𝐽 ) ∧ 𝑣 Ref 𝑈 ) ) |
21 |
19 20
|
sylib |
⊢ ( ( 𝐽 ∈ Paracomp ∧ 𝑈 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑈 ) → ∃ 𝑣 ∈ 𝒫 𝐽 ( 𝑣 ∈ ( LocFin ‘ 𝐽 ) ∧ 𝑣 Ref 𝑈 ) ) |