Step |
Hyp |
Ref |
Expression |
1 |
|
elex |
⊢ ( 𝐽 ∈ Paracomp → 𝐽 ∈ V ) |
2 |
|
elex |
⊢ ( 𝐽 ∈ CovHasRef ( LocFin ‘ 𝐽 ) → 𝐽 ∈ V ) |
3 |
|
id |
⊢ ( 𝑗 = 𝐽 → 𝑗 = 𝐽 ) |
4 |
|
fveq2 |
⊢ ( 𝑗 = 𝐽 → ( LocFin ‘ 𝑗 ) = ( LocFin ‘ 𝐽 ) ) |
5 |
|
crefeq |
⊢ ( ( LocFin ‘ 𝑗 ) = ( LocFin ‘ 𝐽 ) → CovHasRef ( LocFin ‘ 𝑗 ) = CovHasRef ( LocFin ‘ 𝐽 ) ) |
6 |
4 5
|
syl |
⊢ ( 𝑗 = 𝐽 → CovHasRef ( LocFin ‘ 𝑗 ) = CovHasRef ( LocFin ‘ 𝐽 ) ) |
7 |
3 6
|
eleq12d |
⊢ ( 𝑗 = 𝐽 → ( 𝑗 ∈ CovHasRef ( LocFin ‘ 𝑗 ) ↔ 𝐽 ∈ CovHasRef ( LocFin ‘ 𝐽 ) ) ) |
8 |
|
df-pcmp |
⊢ Paracomp = { 𝑗 ∣ 𝑗 ∈ CovHasRef ( LocFin ‘ 𝑗 ) } |
9 |
7 8
|
elab2g |
⊢ ( 𝐽 ∈ V → ( 𝐽 ∈ Paracomp ↔ 𝐽 ∈ CovHasRef ( LocFin ‘ 𝐽 ) ) ) |
10 |
1 2 9
|
pm5.21nii |
⊢ ( 𝐽 ∈ Paracomp ↔ 𝐽 ∈ CovHasRef ( LocFin ‘ 𝐽 ) ) |