Step |
Hyp |
Ref |
Expression |
1 |
|
ineq2 |
⊢ ( 𝐴 = 𝐵 → ( 𝒫 𝑗 ∩ 𝐴 ) = ( 𝒫 𝑗 ∩ 𝐵 ) ) |
2 |
1
|
rexeqdv |
⊢ ( 𝐴 = 𝐵 → ( ∃ 𝑧 ∈ ( 𝒫 𝑗 ∩ 𝐴 ) 𝑧 Ref 𝑦 ↔ ∃ 𝑧 ∈ ( 𝒫 𝑗 ∩ 𝐵 ) 𝑧 Ref 𝑦 ) ) |
3 |
2
|
imbi2d |
⊢ ( 𝐴 = 𝐵 → ( ( ∪ 𝑗 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑗 ∩ 𝐴 ) 𝑧 Ref 𝑦 ) ↔ ( ∪ 𝑗 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑗 ∩ 𝐵 ) 𝑧 Ref 𝑦 ) ) ) |
4 |
3
|
ralbidv |
⊢ ( 𝐴 = 𝐵 → ( ∀ 𝑦 ∈ 𝒫 𝑗 ( ∪ 𝑗 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑗 ∩ 𝐴 ) 𝑧 Ref 𝑦 ) ↔ ∀ 𝑦 ∈ 𝒫 𝑗 ( ∪ 𝑗 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑗 ∩ 𝐵 ) 𝑧 Ref 𝑦 ) ) ) |
5 |
4
|
rabbidv |
⊢ ( 𝐴 = 𝐵 → { 𝑗 ∈ Top ∣ ∀ 𝑦 ∈ 𝒫 𝑗 ( ∪ 𝑗 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑗 ∩ 𝐴 ) 𝑧 Ref 𝑦 ) } = { 𝑗 ∈ Top ∣ ∀ 𝑦 ∈ 𝒫 𝑗 ( ∪ 𝑗 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑗 ∩ 𝐵 ) 𝑧 Ref 𝑦 ) } ) |
6 |
|
df-cref |
⊢ CovHasRef 𝐴 = { 𝑗 ∈ Top ∣ ∀ 𝑦 ∈ 𝒫 𝑗 ( ∪ 𝑗 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑗 ∩ 𝐴 ) 𝑧 Ref 𝑦 ) } |
7 |
|
df-cref |
⊢ CovHasRef 𝐵 = { 𝑗 ∈ Top ∣ ∀ 𝑦 ∈ 𝒫 𝑗 ( ∪ 𝑗 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑗 ∩ 𝐵 ) 𝑧 Ref 𝑦 ) } |
8 |
5 6 7
|
3eqtr4g |
⊢ ( 𝐴 = 𝐵 → CovHasRef 𝐴 = CovHasRef 𝐵 ) |