Metamath Proof Explorer


Theorem crefeq

Description: Equality theorem for the "every open cover has an A refinement" predicate. (Contributed by Thierry Arnoux, 7-Jan-2020)

Ref Expression
Assertion crefeq ( 𝐴 = 𝐵 → CovHasRef 𝐴 = CovHasRef 𝐵 )

Proof

Step Hyp Ref Expression
1 ineq2 ( 𝐴 = 𝐵 → ( 𝒫 𝑗𝐴 ) = ( 𝒫 𝑗𝐵 ) )
2 1 rexeqdv ( 𝐴 = 𝐵 → ( ∃ 𝑧 ∈ ( 𝒫 𝑗𝐴 ) 𝑧 Ref 𝑦 ↔ ∃ 𝑧 ∈ ( 𝒫 𝑗𝐵 ) 𝑧 Ref 𝑦 ) )
3 2 imbi2d ( 𝐴 = 𝐵 → ( ( 𝑗 = 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑗𝐴 ) 𝑧 Ref 𝑦 ) ↔ ( 𝑗 = 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑗𝐵 ) 𝑧 Ref 𝑦 ) ) )
4 3 ralbidv ( 𝐴 = 𝐵 → ( ∀ 𝑦 ∈ 𝒫 𝑗 ( 𝑗 = 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑗𝐴 ) 𝑧 Ref 𝑦 ) ↔ ∀ 𝑦 ∈ 𝒫 𝑗 ( 𝑗 = 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑗𝐵 ) 𝑧 Ref 𝑦 ) ) )
5 4 rabbidv ( 𝐴 = 𝐵 → { 𝑗 ∈ Top ∣ ∀ 𝑦 ∈ 𝒫 𝑗 ( 𝑗 = 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑗𝐴 ) 𝑧 Ref 𝑦 ) } = { 𝑗 ∈ Top ∣ ∀ 𝑦 ∈ 𝒫 𝑗 ( 𝑗 = 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑗𝐵 ) 𝑧 Ref 𝑦 ) } )
6 df-cref CovHasRef 𝐴 = { 𝑗 ∈ Top ∣ ∀ 𝑦 ∈ 𝒫 𝑗 ( 𝑗 = 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑗𝐴 ) 𝑧 Ref 𝑦 ) }
7 df-cref CovHasRef 𝐵 = { 𝑗 ∈ Top ∣ ∀ 𝑦 ∈ 𝒫 𝑗 ( 𝑗 = 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑗𝐵 ) 𝑧 Ref 𝑦 ) }
8 5 6 7 3eqtr4g ( 𝐴 = 𝐵 → CovHasRef 𝐴 = CovHasRef 𝐵 )