Metamath Proof Explorer


Theorem crefeq

Description: Equality theorem for the "every open cover has an A refinement" predicate. (Contributed by Thierry Arnoux, 7-Jan-2020)

Ref Expression
Assertion crefeq A = B CovHasRef A = CovHasRef B

Proof

Step Hyp Ref Expression
1 ineq2 A = B 𝒫 j A = 𝒫 j B
2 1 rexeqdv A = B z 𝒫 j A z Ref y z 𝒫 j B z Ref y
3 2 imbi2d A = B j = y z 𝒫 j A z Ref y j = y z 𝒫 j B z Ref y
4 3 ralbidv A = B y 𝒫 j j = y z 𝒫 j A z Ref y y 𝒫 j j = y z 𝒫 j B z Ref y
5 4 rabbidv A = B j Top | y 𝒫 j j = y z 𝒫 j A z Ref y = j Top | y 𝒫 j j = y z 𝒫 j B z Ref y
6 df-cref CovHasRef A = j Top | y 𝒫 j j = y z 𝒫 j A z Ref y
7 df-cref CovHasRef B = j Top | y 𝒫 j j = y z 𝒫 j B z Ref y
8 5 6 7 3eqtr4g A = B CovHasRef A = CovHasRef B