Metamath Proof Explorer


Theorem crefeq

Description: Equality theorem for the "every open cover has an A refinement" predicate. (Contributed by Thierry Arnoux, 7-Jan-2020)

Ref Expression
Assertion crefeq A=BCovHasRefA=CovHasRefB

Proof

Step Hyp Ref Expression
1 ineq2 A=B𝒫jA=𝒫jB
2 1 rexeqdv A=Bz𝒫jAzRefyz𝒫jBzRefy
3 2 imbi2d A=Bj=yz𝒫jAzRefyj=yz𝒫jBzRefy
4 3 ralbidv A=By𝒫jj=yz𝒫jAzRefyy𝒫jj=yz𝒫jBzRefy
5 4 rabbidv A=BjTop|y𝒫jj=yz𝒫jAzRefy=jTop|y𝒫jj=yz𝒫jBzRefy
6 df-cref CovHasRefA=jTop|y𝒫jj=yz𝒫jAzRefy
7 df-cref CovHasRefB=jTop|y𝒫jj=yz𝒫jBzRefy
8 5 6 7 3eqtr4g A=BCovHasRefA=CovHasRefB