Metamath Proof Explorer


Theorem ispcmp

Description: The predicate "is a paracompact topology". (Contributed by Thierry Arnoux, 7-Jan-2020)

Ref Expression
Assertion ispcmp J Paracomp J CovHasRef LocFin J

Proof

Step Hyp Ref Expression
1 elex J Paracomp J V
2 elex J CovHasRef LocFin J J V
3 id j = J j = J
4 fveq2 j = J LocFin j = LocFin J
5 crefeq LocFin j = LocFin J CovHasRef LocFin j = CovHasRef LocFin J
6 4 5 syl j = J CovHasRef LocFin j = CovHasRef LocFin J
7 3 6 eleq12d j = J j CovHasRef LocFin j J CovHasRef LocFin J
8 df-pcmp Paracomp = j | j CovHasRef LocFin j
9 7 8 elab2g J V J Paracomp J CovHasRef LocFin J
10 1 2 9 pm5.21nii J Paracomp J CovHasRef LocFin J