Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Thierry Arnoux
Topology
Paracompact spaces
ispcmp
Next ⟩
cmppcmp
Metamath Proof Explorer
Ascii
Unicode
Theorem
ispcmp
Description:
The predicate "is a paracompact topology".
(Contributed by
Thierry Arnoux
, 7-Jan-2020)
Ref
Expression
Assertion
ispcmp
⊢
J
∈
Paracomp
↔
J
∈
CovHasRef
LocFin
⁡
J
Proof
Step
Hyp
Ref
Expression
1
elex
⊢
J
∈
Paracomp
→
J
∈
V
2
elex
⊢
J
∈
CovHasRef
LocFin
⁡
J
→
J
∈
V
3
id
⊢
j
=
J
→
j
=
J
4
fveq2
⊢
j
=
J
→
LocFin
⁡
j
=
LocFin
⁡
J
5
crefeq
⊢
LocFin
⁡
j
=
LocFin
⁡
J
→
CovHasRef
LocFin
⁡
j
=
CovHasRef
LocFin
⁡
J
6
4
5
syl
⊢
j
=
J
→
CovHasRef
LocFin
⁡
j
=
CovHasRef
LocFin
⁡
J
7
3
6
eleq12d
⊢
j
=
J
→
j
∈
CovHasRef
LocFin
⁡
j
↔
J
∈
CovHasRef
LocFin
⁡
J
8
df-pcmp
⊢
Paracomp
=
j
|
j
∈
CovHasRef
LocFin
⁡
j
9
7
8
elab2g
⊢
J
∈
V
→
J
∈
Paracomp
↔
J
∈
CovHasRef
LocFin
⁡
J
10
1
2
9
pm5.21nii
⊢
J
∈
Paracomp
↔
J
∈
CovHasRef
LocFin
⁡
J