Step |
Hyp |
Ref |
Expression |
1 |
|
cmptop |
⊢ ( 𝐽 ∈ Comp → 𝐽 ∈ Top ) |
2 |
|
cmpcref |
⊢ Comp = CovHasRef Fin |
3 |
2
|
eleq2i |
⊢ ( 𝐽 ∈ Comp ↔ 𝐽 ∈ CovHasRef Fin ) |
4 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
5 |
4
|
iscref |
⊢ ( 𝐽 ∈ CovHasRef Fin ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑦 ∈ 𝒫 𝐽 ( ∪ 𝐽 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝐽 ∩ Fin ) 𝑧 Ref 𝑦 ) ) ) |
6 |
3 5
|
bitri |
⊢ ( 𝐽 ∈ Comp ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑦 ∈ 𝒫 𝐽 ( ∪ 𝐽 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝐽 ∩ Fin ) 𝑧 Ref 𝑦 ) ) ) |
7 |
6
|
simprbi |
⊢ ( 𝐽 ∈ Comp → ∀ 𝑦 ∈ 𝒫 𝐽 ( ∪ 𝐽 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝐽 ∩ Fin ) 𝑧 Ref 𝑦 ) ) |
8 |
|
simprl |
⊢ ( ( ( ( 𝐽 ∈ Comp ∧ 𝑦 ∈ 𝒫 𝐽 ) ∧ ∪ 𝐽 = ∪ 𝑦 ) ∧ ( 𝑧 ∈ ( 𝒫 𝐽 ∩ Fin ) ∧ 𝑧 Ref 𝑦 ) ) → 𝑧 ∈ ( 𝒫 𝐽 ∩ Fin ) ) |
9 |
|
elin |
⊢ ( 𝑧 ∈ ( 𝒫 𝐽 ∩ Fin ) ↔ ( 𝑧 ∈ 𝒫 𝐽 ∧ 𝑧 ∈ Fin ) ) |
10 |
8 9
|
sylib |
⊢ ( ( ( ( 𝐽 ∈ Comp ∧ 𝑦 ∈ 𝒫 𝐽 ) ∧ ∪ 𝐽 = ∪ 𝑦 ) ∧ ( 𝑧 ∈ ( 𝒫 𝐽 ∩ Fin ) ∧ 𝑧 Ref 𝑦 ) ) → ( 𝑧 ∈ 𝒫 𝐽 ∧ 𝑧 ∈ Fin ) ) |
11 |
10
|
simpld |
⊢ ( ( ( ( 𝐽 ∈ Comp ∧ 𝑦 ∈ 𝒫 𝐽 ) ∧ ∪ 𝐽 = ∪ 𝑦 ) ∧ ( 𝑧 ∈ ( 𝒫 𝐽 ∩ Fin ) ∧ 𝑧 Ref 𝑦 ) ) → 𝑧 ∈ 𝒫 𝐽 ) |
12 |
1
|
ad3antrrr |
⊢ ( ( ( ( 𝐽 ∈ Comp ∧ 𝑦 ∈ 𝒫 𝐽 ) ∧ ∪ 𝐽 = ∪ 𝑦 ) ∧ ( 𝑧 ∈ ( 𝒫 𝐽 ∩ Fin ) ∧ 𝑧 Ref 𝑦 ) ) → 𝐽 ∈ Top ) |
13 |
10
|
simprd |
⊢ ( ( ( ( 𝐽 ∈ Comp ∧ 𝑦 ∈ 𝒫 𝐽 ) ∧ ∪ 𝐽 = ∪ 𝑦 ) ∧ ( 𝑧 ∈ ( 𝒫 𝐽 ∩ Fin ) ∧ 𝑧 Ref 𝑦 ) ) → 𝑧 ∈ Fin ) |
14 |
|
simplr |
⊢ ( ( ( ( 𝐽 ∈ Comp ∧ 𝑦 ∈ 𝒫 𝐽 ) ∧ ∪ 𝐽 = ∪ 𝑦 ) ∧ ( 𝑧 ∈ ( 𝒫 𝐽 ∩ Fin ) ∧ 𝑧 Ref 𝑦 ) ) → ∪ 𝐽 = ∪ 𝑦 ) |
15 |
|
simprr |
⊢ ( ( ( ( 𝐽 ∈ Comp ∧ 𝑦 ∈ 𝒫 𝐽 ) ∧ ∪ 𝐽 = ∪ 𝑦 ) ∧ ( 𝑧 ∈ ( 𝒫 𝐽 ∩ Fin ) ∧ 𝑧 Ref 𝑦 ) ) → 𝑧 Ref 𝑦 ) |
16 |
|
eqid |
⊢ ∪ 𝑧 = ∪ 𝑧 |
17 |
|
eqid |
⊢ ∪ 𝑦 = ∪ 𝑦 |
18 |
16 17
|
refbas |
⊢ ( 𝑧 Ref 𝑦 → ∪ 𝑦 = ∪ 𝑧 ) |
19 |
15 18
|
syl |
⊢ ( ( ( ( 𝐽 ∈ Comp ∧ 𝑦 ∈ 𝒫 𝐽 ) ∧ ∪ 𝐽 = ∪ 𝑦 ) ∧ ( 𝑧 ∈ ( 𝒫 𝐽 ∩ Fin ) ∧ 𝑧 Ref 𝑦 ) ) → ∪ 𝑦 = ∪ 𝑧 ) |
20 |
14 19
|
eqtrd |
⊢ ( ( ( ( 𝐽 ∈ Comp ∧ 𝑦 ∈ 𝒫 𝐽 ) ∧ ∪ 𝐽 = ∪ 𝑦 ) ∧ ( 𝑧 ∈ ( 𝒫 𝐽 ∩ Fin ) ∧ 𝑧 Ref 𝑦 ) ) → ∪ 𝐽 = ∪ 𝑧 ) |
21 |
4 16
|
finlocfin |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑧 ∈ Fin ∧ ∪ 𝐽 = ∪ 𝑧 ) → 𝑧 ∈ ( LocFin ‘ 𝐽 ) ) |
22 |
12 13 20 21
|
syl3anc |
⊢ ( ( ( ( 𝐽 ∈ Comp ∧ 𝑦 ∈ 𝒫 𝐽 ) ∧ ∪ 𝐽 = ∪ 𝑦 ) ∧ ( 𝑧 ∈ ( 𝒫 𝐽 ∩ Fin ) ∧ 𝑧 Ref 𝑦 ) ) → 𝑧 ∈ ( LocFin ‘ 𝐽 ) ) |
23 |
11 22
|
elind |
⊢ ( ( ( ( 𝐽 ∈ Comp ∧ 𝑦 ∈ 𝒫 𝐽 ) ∧ ∪ 𝐽 = ∪ 𝑦 ) ∧ ( 𝑧 ∈ ( 𝒫 𝐽 ∩ Fin ) ∧ 𝑧 Ref 𝑦 ) ) → 𝑧 ∈ ( 𝒫 𝐽 ∩ ( LocFin ‘ 𝐽 ) ) ) |
24 |
23 15
|
jca |
⊢ ( ( ( ( 𝐽 ∈ Comp ∧ 𝑦 ∈ 𝒫 𝐽 ) ∧ ∪ 𝐽 = ∪ 𝑦 ) ∧ ( 𝑧 ∈ ( 𝒫 𝐽 ∩ Fin ) ∧ 𝑧 Ref 𝑦 ) ) → ( 𝑧 ∈ ( 𝒫 𝐽 ∩ ( LocFin ‘ 𝐽 ) ) ∧ 𝑧 Ref 𝑦 ) ) |
25 |
24
|
ex |
⊢ ( ( ( 𝐽 ∈ Comp ∧ 𝑦 ∈ 𝒫 𝐽 ) ∧ ∪ 𝐽 = ∪ 𝑦 ) → ( ( 𝑧 ∈ ( 𝒫 𝐽 ∩ Fin ) ∧ 𝑧 Ref 𝑦 ) → ( 𝑧 ∈ ( 𝒫 𝐽 ∩ ( LocFin ‘ 𝐽 ) ) ∧ 𝑧 Ref 𝑦 ) ) ) |
26 |
25
|
reximdv2 |
⊢ ( ( ( 𝐽 ∈ Comp ∧ 𝑦 ∈ 𝒫 𝐽 ) ∧ ∪ 𝐽 = ∪ 𝑦 ) → ( ∃ 𝑧 ∈ ( 𝒫 𝐽 ∩ Fin ) 𝑧 Ref 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝐽 ∩ ( LocFin ‘ 𝐽 ) ) 𝑧 Ref 𝑦 ) ) |
27 |
26
|
ex |
⊢ ( ( 𝐽 ∈ Comp ∧ 𝑦 ∈ 𝒫 𝐽 ) → ( ∪ 𝐽 = ∪ 𝑦 → ( ∃ 𝑧 ∈ ( 𝒫 𝐽 ∩ Fin ) 𝑧 Ref 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝐽 ∩ ( LocFin ‘ 𝐽 ) ) 𝑧 Ref 𝑦 ) ) ) |
28 |
27
|
a2d |
⊢ ( ( 𝐽 ∈ Comp ∧ 𝑦 ∈ 𝒫 𝐽 ) → ( ( ∪ 𝐽 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝐽 ∩ Fin ) 𝑧 Ref 𝑦 ) → ( ∪ 𝐽 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝐽 ∩ ( LocFin ‘ 𝐽 ) ) 𝑧 Ref 𝑦 ) ) ) |
29 |
28
|
ralimdva |
⊢ ( 𝐽 ∈ Comp → ( ∀ 𝑦 ∈ 𝒫 𝐽 ( ∪ 𝐽 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝐽 ∩ Fin ) 𝑧 Ref 𝑦 ) → ∀ 𝑦 ∈ 𝒫 𝐽 ( ∪ 𝐽 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝐽 ∩ ( LocFin ‘ 𝐽 ) ) 𝑧 Ref 𝑦 ) ) ) |
30 |
7 29
|
mpd |
⊢ ( 𝐽 ∈ Comp → ∀ 𝑦 ∈ 𝒫 𝐽 ( ∪ 𝐽 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝐽 ∩ ( LocFin ‘ 𝐽 ) ) 𝑧 Ref 𝑦 ) ) |
31 |
|
ispcmp |
⊢ ( 𝐽 ∈ Paracomp ↔ 𝐽 ∈ CovHasRef ( LocFin ‘ 𝐽 ) ) |
32 |
4
|
iscref |
⊢ ( 𝐽 ∈ CovHasRef ( LocFin ‘ 𝐽 ) ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑦 ∈ 𝒫 𝐽 ( ∪ 𝐽 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝐽 ∩ ( LocFin ‘ 𝐽 ) ) 𝑧 Ref 𝑦 ) ) ) |
33 |
31 32
|
bitri |
⊢ ( 𝐽 ∈ Paracomp ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑦 ∈ 𝒫 𝐽 ( ∪ 𝐽 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝐽 ∩ ( LocFin ‘ 𝐽 ) ) 𝑧 Ref 𝑦 ) ) ) |
34 |
1 30 33
|
sylanbrc |
⊢ ( 𝐽 ∈ Comp → 𝐽 ∈ Paracomp ) |