Metamath Proof Explorer


Theorem dispcmp

Description: Every discrete space is paracompact. (Contributed by Thierry Arnoux, 7-Jan-2020)

Ref Expression
Assertion dispcmp ( 𝑋𝑉 → 𝒫 𝑋 ∈ Paracomp )

Proof

Step Hyp Ref Expression
1 distop ( 𝑋𝑉 → 𝒫 𝑋 ∈ Top )
2 simpr ( ( 𝑥𝑋𝑢 = { 𝑥 } ) → 𝑢 = { 𝑥 } )
3 snelpwi ( 𝑥𝑋 → { 𝑥 } ∈ 𝒫 𝑋 )
4 3 adantr ( ( 𝑥𝑋𝑢 = { 𝑥 } ) → { 𝑥 } ∈ 𝒫 𝑋 )
5 2 4 eqeltrd ( ( 𝑥𝑋𝑢 = { 𝑥 } ) → 𝑢 ∈ 𝒫 𝑋 )
6 5 rexlimiva ( ∃ 𝑥𝑋 𝑢 = { 𝑥 } → 𝑢 ∈ 𝒫 𝑋 )
7 6 abssi { 𝑢 ∣ ∃ 𝑥𝑋 𝑢 = { 𝑥 } } ⊆ 𝒫 𝑋
8 simpl ( ( 𝑢 = 𝑣𝑥 = 𝑧 ) → 𝑢 = 𝑣 )
9 simpr ( ( 𝑢 = 𝑣𝑥 = 𝑧 ) → 𝑥 = 𝑧 )
10 9 sneqd ( ( 𝑢 = 𝑣𝑥 = 𝑧 ) → { 𝑥 } = { 𝑧 } )
11 8 10 eqeq12d ( ( 𝑢 = 𝑣𝑥 = 𝑧 ) → ( 𝑢 = { 𝑥 } ↔ 𝑣 = { 𝑧 } ) )
12 11 cbvrexdva ( 𝑢 = 𝑣 → ( ∃ 𝑥𝑋 𝑢 = { 𝑥 } ↔ ∃ 𝑧𝑋 𝑣 = { 𝑧 } ) )
13 12 cbvabv { 𝑢 ∣ ∃ 𝑥𝑋 𝑢 = { 𝑥 } } = { 𝑣 ∣ ∃ 𝑧𝑋 𝑣 = { 𝑧 } }
14 13 dissnlocfin ( 𝑋𝑉 → { 𝑢 ∣ ∃ 𝑥𝑋 𝑢 = { 𝑥 } } ∈ ( LocFin ‘ 𝒫 𝑋 ) )
15 elpwg ( { 𝑢 ∣ ∃ 𝑥𝑋 𝑢 = { 𝑥 } } ∈ ( LocFin ‘ 𝒫 𝑋 ) → ( { 𝑢 ∣ ∃ 𝑥𝑋 𝑢 = { 𝑥 } } ∈ 𝒫 𝒫 𝑋 ↔ { 𝑢 ∣ ∃ 𝑥𝑋 𝑢 = { 𝑥 } } ⊆ 𝒫 𝑋 ) )
16 14 15 syl ( 𝑋𝑉 → ( { 𝑢 ∣ ∃ 𝑥𝑋 𝑢 = { 𝑥 } } ∈ 𝒫 𝒫 𝑋 ↔ { 𝑢 ∣ ∃ 𝑥𝑋 𝑢 = { 𝑥 } } ⊆ 𝒫 𝑋 ) )
17 7 16 mpbiri ( 𝑋𝑉 → { 𝑢 ∣ ∃ 𝑥𝑋 𝑢 = { 𝑥 } } ∈ 𝒫 𝒫 𝑋 )
18 17 ad2antrr ( ( ( 𝑋𝑉𝑦 ∈ 𝒫 𝒫 𝑋 ) ∧ 𝑋 = 𝑦 ) → { 𝑢 ∣ ∃ 𝑥𝑋 𝑢 = { 𝑥 } } ∈ 𝒫 𝒫 𝑋 )
19 14 ad2antrr ( ( ( 𝑋𝑉𝑦 ∈ 𝒫 𝒫 𝑋 ) ∧ 𝑋 = 𝑦 ) → { 𝑢 ∣ ∃ 𝑥𝑋 𝑢 = { 𝑥 } } ∈ ( LocFin ‘ 𝒫 𝑋 ) )
20 18 19 elind ( ( ( 𝑋𝑉𝑦 ∈ 𝒫 𝒫 𝑋 ) ∧ 𝑋 = 𝑦 ) → { 𝑢 ∣ ∃ 𝑥𝑋 𝑢 = { 𝑥 } } ∈ ( 𝒫 𝒫 𝑋 ∩ ( LocFin ‘ 𝒫 𝑋 ) ) )
21 simpll ( ( ( 𝑋𝑉𝑦 ∈ 𝒫 𝒫 𝑋 ) ∧ 𝑋 = 𝑦 ) → 𝑋𝑉 )
22 simpr ( ( ( 𝑋𝑉𝑦 ∈ 𝒫 𝒫 𝑋 ) ∧ 𝑋 = 𝑦 ) → 𝑋 = 𝑦 )
23 22 eqcomd ( ( ( 𝑋𝑉𝑦 ∈ 𝒫 𝒫 𝑋 ) ∧ 𝑋 = 𝑦 ) → 𝑦 = 𝑋 )
24 13 dissnref ( ( 𝑋𝑉 𝑦 = 𝑋 ) → { 𝑢 ∣ ∃ 𝑥𝑋 𝑢 = { 𝑥 } } Ref 𝑦 )
25 21 23 24 syl2anc ( ( ( 𝑋𝑉𝑦 ∈ 𝒫 𝒫 𝑋 ) ∧ 𝑋 = 𝑦 ) → { 𝑢 ∣ ∃ 𝑥𝑋 𝑢 = { 𝑥 } } Ref 𝑦 )
26 breq1 ( 𝑧 = { 𝑢 ∣ ∃ 𝑥𝑋 𝑢 = { 𝑥 } } → ( 𝑧 Ref 𝑦 ↔ { 𝑢 ∣ ∃ 𝑥𝑋 𝑢 = { 𝑥 } } Ref 𝑦 ) )
27 26 rspcev ( ( { 𝑢 ∣ ∃ 𝑥𝑋 𝑢 = { 𝑥 } } ∈ ( 𝒫 𝒫 𝑋 ∩ ( LocFin ‘ 𝒫 𝑋 ) ) ∧ { 𝑢 ∣ ∃ 𝑥𝑋 𝑢 = { 𝑥 } } Ref 𝑦 ) → ∃ 𝑧 ∈ ( 𝒫 𝒫 𝑋 ∩ ( LocFin ‘ 𝒫 𝑋 ) ) 𝑧 Ref 𝑦 )
28 20 25 27 syl2anc ( ( ( 𝑋𝑉𝑦 ∈ 𝒫 𝒫 𝑋 ) ∧ 𝑋 = 𝑦 ) → ∃ 𝑧 ∈ ( 𝒫 𝒫 𝑋 ∩ ( LocFin ‘ 𝒫 𝑋 ) ) 𝑧 Ref 𝑦 )
29 28 ex ( ( 𝑋𝑉𝑦 ∈ 𝒫 𝒫 𝑋 ) → ( 𝑋 = 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝒫 𝑋 ∩ ( LocFin ‘ 𝒫 𝑋 ) ) 𝑧 Ref 𝑦 ) )
30 29 ralrimiva ( 𝑋𝑉 → ∀ 𝑦 ∈ 𝒫 𝒫 𝑋 ( 𝑋 = 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝒫 𝑋 ∩ ( LocFin ‘ 𝒫 𝑋 ) ) 𝑧 Ref 𝑦 ) )
31 unipw 𝒫 𝑋 = 𝑋
32 31 eqcomi 𝑋 = 𝒫 𝑋
33 32 iscref ( 𝒫 𝑋 ∈ CovHasRef ( LocFin ‘ 𝒫 𝑋 ) ↔ ( 𝒫 𝑋 ∈ Top ∧ ∀ 𝑦 ∈ 𝒫 𝒫 𝑋 ( 𝑋 = 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝒫 𝑋 ∩ ( LocFin ‘ 𝒫 𝑋 ) ) 𝑧 Ref 𝑦 ) ) )
34 1 30 33 sylanbrc ( 𝑋𝑉 → 𝒫 𝑋 ∈ CovHasRef ( LocFin ‘ 𝒫 𝑋 ) )
35 ispcmp ( 𝒫 𝑋 ∈ Paracomp ↔ 𝒫 𝑋 ∈ CovHasRef ( LocFin ‘ 𝒫 𝑋 ) )
36 34 35 sylibr ( 𝑋𝑉 → 𝒫 𝑋 ∈ Paracomp )