Step |
Hyp |
Ref |
Expression |
1 |
|
distop |
⊢ ( 𝑋 ∈ 𝑉 → 𝒫 𝑋 ∈ Top ) |
2 |
|
simpr |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑢 = { 𝑥 } ) → 𝑢 = { 𝑥 } ) |
3 |
|
snelpwi |
⊢ ( 𝑥 ∈ 𝑋 → { 𝑥 } ∈ 𝒫 𝑋 ) |
4 |
3
|
adantr |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑢 = { 𝑥 } ) → { 𝑥 } ∈ 𝒫 𝑋 ) |
5 |
2 4
|
eqeltrd |
⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑢 = { 𝑥 } ) → 𝑢 ∈ 𝒫 𝑋 ) |
6 |
5
|
rexlimiva |
⊢ ( ∃ 𝑥 ∈ 𝑋 𝑢 = { 𝑥 } → 𝑢 ∈ 𝒫 𝑋 ) |
7 |
6
|
abssi |
⊢ { 𝑢 ∣ ∃ 𝑥 ∈ 𝑋 𝑢 = { 𝑥 } } ⊆ 𝒫 𝑋 |
8 |
|
simpl |
⊢ ( ( 𝑢 = 𝑣 ∧ 𝑥 = 𝑧 ) → 𝑢 = 𝑣 ) |
9 |
|
simpr |
⊢ ( ( 𝑢 = 𝑣 ∧ 𝑥 = 𝑧 ) → 𝑥 = 𝑧 ) |
10 |
9
|
sneqd |
⊢ ( ( 𝑢 = 𝑣 ∧ 𝑥 = 𝑧 ) → { 𝑥 } = { 𝑧 } ) |
11 |
8 10
|
eqeq12d |
⊢ ( ( 𝑢 = 𝑣 ∧ 𝑥 = 𝑧 ) → ( 𝑢 = { 𝑥 } ↔ 𝑣 = { 𝑧 } ) ) |
12 |
11
|
cbvrexdva |
⊢ ( 𝑢 = 𝑣 → ( ∃ 𝑥 ∈ 𝑋 𝑢 = { 𝑥 } ↔ ∃ 𝑧 ∈ 𝑋 𝑣 = { 𝑧 } ) ) |
13 |
12
|
cbvabv |
⊢ { 𝑢 ∣ ∃ 𝑥 ∈ 𝑋 𝑢 = { 𝑥 } } = { 𝑣 ∣ ∃ 𝑧 ∈ 𝑋 𝑣 = { 𝑧 } } |
14 |
13
|
dissnlocfin |
⊢ ( 𝑋 ∈ 𝑉 → { 𝑢 ∣ ∃ 𝑥 ∈ 𝑋 𝑢 = { 𝑥 } } ∈ ( LocFin ‘ 𝒫 𝑋 ) ) |
15 |
|
elpwg |
⊢ ( { 𝑢 ∣ ∃ 𝑥 ∈ 𝑋 𝑢 = { 𝑥 } } ∈ ( LocFin ‘ 𝒫 𝑋 ) → ( { 𝑢 ∣ ∃ 𝑥 ∈ 𝑋 𝑢 = { 𝑥 } } ∈ 𝒫 𝒫 𝑋 ↔ { 𝑢 ∣ ∃ 𝑥 ∈ 𝑋 𝑢 = { 𝑥 } } ⊆ 𝒫 𝑋 ) ) |
16 |
14 15
|
syl |
⊢ ( 𝑋 ∈ 𝑉 → ( { 𝑢 ∣ ∃ 𝑥 ∈ 𝑋 𝑢 = { 𝑥 } } ∈ 𝒫 𝒫 𝑋 ↔ { 𝑢 ∣ ∃ 𝑥 ∈ 𝑋 𝑢 = { 𝑥 } } ⊆ 𝒫 𝑋 ) ) |
17 |
7 16
|
mpbiri |
⊢ ( 𝑋 ∈ 𝑉 → { 𝑢 ∣ ∃ 𝑥 ∈ 𝑋 𝑢 = { 𝑥 } } ∈ 𝒫 𝒫 𝑋 ) |
18 |
17
|
ad2antrr |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝒫 𝑋 ) ∧ 𝑋 = ∪ 𝑦 ) → { 𝑢 ∣ ∃ 𝑥 ∈ 𝑋 𝑢 = { 𝑥 } } ∈ 𝒫 𝒫 𝑋 ) |
19 |
14
|
ad2antrr |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝒫 𝑋 ) ∧ 𝑋 = ∪ 𝑦 ) → { 𝑢 ∣ ∃ 𝑥 ∈ 𝑋 𝑢 = { 𝑥 } } ∈ ( LocFin ‘ 𝒫 𝑋 ) ) |
20 |
18 19
|
elind |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝒫 𝑋 ) ∧ 𝑋 = ∪ 𝑦 ) → { 𝑢 ∣ ∃ 𝑥 ∈ 𝑋 𝑢 = { 𝑥 } } ∈ ( 𝒫 𝒫 𝑋 ∩ ( LocFin ‘ 𝒫 𝑋 ) ) ) |
21 |
|
simpll |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝒫 𝑋 ) ∧ 𝑋 = ∪ 𝑦 ) → 𝑋 ∈ 𝑉 ) |
22 |
|
simpr |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝒫 𝑋 ) ∧ 𝑋 = ∪ 𝑦 ) → 𝑋 = ∪ 𝑦 ) |
23 |
22
|
eqcomd |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝒫 𝑋 ) ∧ 𝑋 = ∪ 𝑦 ) → ∪ 𝑦 = 𝑋 ) |
24 |
13
|
dissnref |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ∪ 𝑦 = 𝑋 ) → { 𝑢 ∣ ∃ 𝑥 ∈ 𝑋 𝑢 = { 𝑥 } } Ref 𝑦 ) |
25 |
21 23 24
|
syl2anc |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝒫 𝑋 ) ∧ 𝑋 = ∪ 𝑦 ) → { 𝑢 ∣ ∃ 𝑥 ∈ 𝑋 𝑢 = { 𝑥 } } Ref 𝑦 ) |
26 |
|
breq1 |
⊢ ( 𝑧 = { 𝑢 ∣ ∃ 𝑥 ∈ 𝑋 𝑢 = { 𝑥 } } → ( 𝑧 Ref 𝑦 ↔ { 𝑢 ∣ ∃ 𝑥 ∈ 𝑋 𝑢 = { 𝑥 } } Ref 𝑦 ) ) |
27 |
26
|
rspcev |
⊢ ( ( { 𝑢 ∣ ∃ 𝑥 ∈ 𝑋 𝑢 = { 𝑥 } } ∈ ( 𝒫 𝒫 𝑋 ∩ ( LocFin ‘ 𝒫 𝑋 ) ) ∧ { 𝑢 ∣ ∃ 𝑥 ∈ 𝑋 𝑢 = { 𝑥 } } Ref 𝑦 ) → ∃ 𝑧 ∈ ( 𝒫 𝒫 𝑋 ∩ ( LocFin ‘ 𝒫 𝑋 ) ) 𝑧 Ref 𝑦 ) |
28 |
20 25 27
|
syl2anc |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝒫 𝑋 ) ∧ 𝑋 = ∪ 𝑦 ) → ∃ 𝑧 ∈ ( 𝒫 𝒫 𝑋 ∩ ( LocFin ‘ 𝒫 𝑋 ) ) 𝑧 Ref 𝑦 ) |
29 |
28
|
ex |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑦 ∈ 𝒫 𝒫 𝑋 ) → ( 𝑋 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝒫 𝑋 ∩ ( LocFin ‘ 𝒫 𝑋 ) ) 𝑧 Ref 𝑦 ) ) |
30 |
29
|
ralrimiva |
⊢ ( 𝑋 ∈ 𝑉 → ∀ 𝑦 ∈ 𝒫 𝒫 𝑋 ( 𝑋 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝒫 𝑋 ∩ ( LocFin ‘ 𝒫 𝑋 ) ) 𝑧 Ref 𝑦 ) ) |
31 |
|
unipw |
⊢ ∪ 𝒫 𝑋 = 𝑋 |
32 |
31
|
eqcomi |
⊢ 𝑋 = ∪ 𝒫 𝑋 |
33 |
32
|
iscref |
⊢ ( 𝒫 𝑋 ∈ CovHasRef ( LocFin ‘ 𝒫 𝑋 ) ↔ ( 𝒫 𝑋 ∈ Top ∧ ∀ 𝑦 ∈ 𝒫 𝒫 𝑋 ( 𝑋 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝒫 𝑋 ∩ ( LocFin ‘ 𝒫 𝑋 ) ) 𝑧 Ref 𝑦 ) ) ) |
34 |
1 30 33
|
sylanbrc |
⊢ ( 𝑋 ∈ 𝑉 → 𝒫 𝑋 ∈ CovHasRef ( LocFin ‘ 𝒫 𝑋 ) ) |
35 |
|
ispcmp |
⊢ ( 𝒫 𝑋 ∈ Paracomp ↔ 𝒫 𝑋 ∈ CovHasRef ( LocFin ‘ 𝒫 𝑋 ) ) |
36 |
34 35
|
sylibr |
⊢ ( 𝑋 ∈ 𝑉 → 𝒫 𝑋 ∈ Paracomp ) |