Metamath Proof Explorer


Theorem dispcmp

Description: Every discrete space is paracompact. (Contributed by Thierry Arnoux, 7-Jan-2020)

Ref Expression
Assertion dispcmp XV𝒫XParacomp

Proof

Step Hyp Ref Expression
1 distop XV𝒫XTop
2 simpr xXu=xu=x
3 snelpwi xXx𝒫X
4 3 adantr xXu=xx𝒫X
5 2 4 eqeltrd xXu=xu𝒫X
6 5 rexlimiva xXu=xu𝒫X
7 6 abssi u|xXu=x𝒫X
8 simpl u=vx=zu=v
9 simpr u=vx=zx=z
10 9 sneqd u=vx=zx=z
11 8 10 eqeq12d u=vx=zu=xv=z
12 11 cbvrexdva u=vxXu=xzXv=z
13 12 cbvabv u|xXu=x=v|zXv=z
14 13 dissnlocfin XVu|xXu=xLocFin𝒫X
15 elpwg u|xXu=xLocFin𝒫Xu|xXu=x𝒫𝒫Xu|xXu=x𝒫X
16 14 15 syl XVu|xXu=x𝒫𝒫Xu|xXu=x𝒫X
17 7 16 mpbiri XVu|xXu=x𝒫𝒫X
18 17 ad2antrr XVy𝒫𝒫XX=yu|xXu=x𝒫𝒫X
19 14 ad2antrr XVy𝒫𝒫XX=yu|xXu=xLocFin𝒫X
20 18 19 elind XVy𝒫𝒫XX=yu|xXu=x𝒫𝒫XLocFin𝒫X
21 simpll XVy𝒫𝒫XX=yXV
22 simpr XVy𝒫𝒫XX=yX=y
23 22 eqcomd XVy𝒫𝒫XX=yy=X
24 13 dissnref XVy=Xu|xXu=xRefy
25 21 23 24 syl2anc XVy𝒫𝒫XX=yu|xXu=xRefy
26 breq1 z=u|xXu=xzRefyu|xXu=xRefy
27 26 rspcev u|xXu=x𝒫𝒫XLocFin𝒫Xu|xXu=xRefyz𝒫𝒫XLocFin𝒫XzRefy
28 20 25 27 syl2anc XVy𝒫𝒫XX=yz𝒫𝒫XLocFin𝒫XzRefy
29 28 ex XVy𝒫𝒫XX=yz𝒫𝒫XLocFin𝒫XzRefy
30 29 ralrimiva XVy𝒫𝒫XX=yz𝒫𝒫XLocFin𝒫XzRefy
31 unipw 𝒫X=X
32 31 eqcomi X=𝒫X
33 32 iscref 𝒫XCovHasRefLocFin𝒫X𝒫XTopy𝒫𝒫XX=yz𝒫𝒫XLocFin𝒫XzRefy
34 1 30 33 sylanbrc XV𝒫XCovHasRefLocFin𝒫X
35 ispcmp 𝒫XParacomp𝒫XCovHasRefLocFin𝒫X
36 34 35 sylibr XV𝒫XParacomp