Description: Every discrete space is paracompact. (Contributed by Thierry Arnoux, 7-Jan-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | dispcmp | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | distop | |
|
2 | simpr | |
|
3 | snelpwi | |
|
4 | 3 | adantr | |
5 | 2 4 | eqeltrd | |
6 | 5 | rexlimiva | |
7 | 6 | abssi | |
8 | simpl | |
|
9 | simpr | |
|
10 | 9 | sneqd | |
11 | 8 10 | eqeq12d | |
12 | 11 | cbvrexdva | |
13 | 12 | cbvabv | |
14 | 13 | dissnlocfin | |
15 | elpwg | |
|
16 | 14 15 | syl | |
17 | 7 16 | mpbiri | |
18 | 17 | ad2antrr | |
19 | 14 | ad2antrr | |
20 | 18 19 | elind | |
21 | simpll | |
|
22 | simpr | |
|
23 | 22 | eqcomd | |
24 | 13 | dissnref | |
25 | 21 23 24 | syl2anc | |
26 | breq1 | |
|
27 | 26 | rspcev | |
28 | 20 25 27 | syl2anc | |
29 | 28 | ex | |
30 | 29 | ralrimiva | |
31 | unipw | |
|
32 | 31 | eqcomi | |
33 | 32 | iscref | |
34 | 1 30 33 | sylanbrc | |
35 | ispcmp | |
|
36 | 34 35 | sylibr | |