| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pridl.1 | ⊢ 𝐻  =  ( 2nd  ‘ 𝑅 ) | 
						
							| 2 |  | eqid | ⊢ ( 1st  ‘ 𝑅 )  =  ( 1st  ‘ 𝑅 ) | 
						
							| 3 |  | eqid | ⊢ ran  ( 1st  ‘ 𝑅 )  =  ran  ( 1st  ‘ 𝑅 ) | 
						
							| 4 | 2 1 3 | ispridl | ⊢ ( 𝑅  ∈  RingOps  →  ( 𝑃  ∈  ( PrIdl ‘ 𝑅 )  ↔  ( 𝑃  ∈  ( Idl ‘ 𝑅 )  ∧  𝑃  ≠  ran  ( 1st  ‘ 𝑅 )  ∧  ∀ 𝑎  ∈  ( Idl ‘ 𝑅 ) ∀ 𝑏  ∈  ( Idl ‘ 𝑅 ) ( ∀ 𝑥  ∈  𝑎 ∀ 𝑦  ∈  𝑏 ( 𝑥 𝐻 𝑦 )  ∈  𝑃  →  ( 𝑎  ⊆  𝑃  ∨  𝑏  ⊆  𝑃 ) ) ) ) ) | 
						
							| 5 |  | df-3an | ⊢ ( ( 𝑃  ∈  ( Idl ‘ 𝑅 )  ∧  𝑃  ≠  ran  ( 1st  ‘ 𝑅 )  ∧  ∀ 𝑎  ∈  ( Idl ‘ 𝑅 ) ∀ 𝑏  ∈  ( Idl ‘ 𝑅 ) ( ∀ 𝑥  ∈  𝑎 ∀ 𝑦  ∈  𝑏 ( 𝑥 𝐻 𝑦 )  ∈  𝑃  →  ( 𝑎  ⊆  𝑃  ∨  𝑏  ⊆  𝑃 ) ) )  ↔  ( ( 𝑃  ∈  ( Idl ‘ 𝑅 )  ∧  𝑃  ≠  ran  ( 1st  ‘ 𝑅 ) )  ∧  ∀ 𝑎  ∈  ( Idl ‘ 𝑅 ) ∀ 𝑏  ∈  ( Idl ‘ 𝑅 ) ( ∀ 𝑥  ∈  𝑎 ∀ 𝑦  ∈  𝑏 ( 𝑥 𝐻 𝑦 )  ∈  𝑃  →  ( 𝑎  ⊆  𝑃  ∨  𝑏  ⊆  𝑃 ) ) ) ) | 
						
							| 6 | 4 5 | bitrdi | ⊢ ( 𝑅  ∈  RingOps  →  ( 𝑃  ∈  ( PrIdl ‘ 𝑅 )  ↔  ( ( 𝑃  ∈  ( Idl ‘ 𝑅 )  ∧  𝑃  ≠  ran  ( 1st  ‘ 𝑅 ) )  ∧  ∀ 𝑎  ∈  ( Idl ‘ 𝑅 ) ∀ 𝑏  ∈  ( Idl ‘ 𝑅 ) ( ∀ 𝑥  ∈  𝑎 ∀ 𝑦  ∈  𝑏 ( 𝑥 𝐻 𝑦 )  ∈  𝑃  →  ( 𝑎  ⊆  𝑃  ∨  𝑏  ⊆  𝑃 ) ) ) ) ) | 
						
							| 7 | 6 | simplbda | ⊢ ( ( 𝑅  ∈  RingOps  ∧  𝑃  ∈  ( PrIdl ‘ 𝑅 ) )  →  ∀ 𝑎  ∈  ( Idl ‘ 𝑅 ) ∀ 𝑏  ∈  ( Idl ‘ 𝑅 ) ( ∀ 𝑥  ∈  𝑎 ∀ 𝑦  ∈  𝑏 ( 𝑥 𝐻 𝑦 )  ∈  𝑃  →  ( 𝑎  ⊆  𝑃  ∨  𝑏  ⊆  𝑃 ) ) ) | 
						
							| 8 |  | raleq | ⊢ ( 𝑎  =  𝐴  →  ( ∀ 𝑥  ∈  𝑎 ∀ 𝑦  ∈  𝑏 ( 𝑥 𝐻 𝑦 )  ∈  𝑃  ↔  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝑏 ( 𝑥 𝐻 𝑦 )  ∈  𝑃 ) ) | 
						
							| 9 |  | sseq1 | ⊢ ( 𝑎  =  𝐴  →  ( 𝑎  ⊆  𝑃  ↔  𝐴  ⊆  𝑃 ) ) | 
						
							| 10 | 9 | orbi1d | ⊢ ( 𝑎  =  𝐴  →  ( ( 𝑎  ⊆  𝑃  ∨  𝑏  ⊆  𝑃 )  ↔  ( 𝐴  ⊆  𝑃  ∨  𝑏  ⊆  𝑃 ) ) ) | 
						
							| 11 | 8 10 | imbi12d | ⊢ ( 𝑎  =  𝐴  →  ( ( ∀ 𝑥  ∈  𝑎 ∀ 𝑦  ∈  𝑏 ( 𝑥 𝐻 𝑦 )  ∈  𝑃  →  ( 𝑎  ⊆  𝑃  ∨  𝑏  ⊆  𝑃 ) )  ↔  ( ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝑏 ( 𝑥 𝐻 𝑦 )  ∈  𝑃  →  ( 𝐴  ⊆  𝑃  ∨  𝑏  ⊆  𝑃 ) ) ) ) | 
						
							| 12 |  | raleq | ⊢ ( 𝑏  =  𝐵  →  ( ∀ 𝑦  ∈  𝑏 ( 𝑥 𝐻 𝑦 )  ∈  𝑃  ↔  ∀ 𝑦  ∈  𝐵 ( 𝑥 𝐻 𝑦 )  ∈  𝑃 ) ) | 
						
							| 13 | 12 | ralbidv | ⊢ ( 𝑏  =  𝐵  →  ( ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝑏 ( 𝑥 𝐻 𝑦 )  ∈  𝑃  ↔  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( 𝑥 𝐻 𝑦 )  ∈  𝑃 ) ) | 
						
							| 14 |  | sseq1 | ⊢ ( 𝑏  =  𝐵  →  ( 𝑏  ⊆  𝑃  ↔  𝐵  ⊆  𝑃 ) ) | 
						
							| 15 | 14 | orbi2d | ⊢ ( 𝑏  =  𝐵  →  ( ( 𝐴  ⊆  𝑃  ∨  𝑏  ⊆  𝑃 )  ↔  ( 𝐴  ⊆  𝑃  ∨  𝐵  ⊆  𝑃 ) ) ) | 
						
							| 16 | 13 15 | imbi12d | ⊢ ( 𝑏  =  𝐵  →  ( ( ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝑏 ( 𝑥 𝐻 𝑦 )  ∈  𝑃  →  ( 𝐴  ⊆  𝑃  ∨  𝑏  ⊆  𝑃 ) )  ↔  ( ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( 𝑥 𝐻 𝑦 )  ∈  𝑃  →  ( 𝐴  ⊆  𝑃  ∨  𝐵  ⊆  𝑃 ) ) ) ) | 
						
							| 17 | 11 16 | rspc2v | ⊢ ( ( 𝐴  ∈  ( Idl ‘ 𝑅 )  ∧  𝐵  ∈  ( Idl ‘ 𝑅 ) )  →  ( ∀ 𝑎  ∈  ( Idl ‘ 𝑅 ) ∀ 𝑏  ∈  ( Idl ‘ 𝑅 ) ( ∀ 𝑥  ∈  𝑎 ∀ 𝑦  ∈  𝑏 ( 𝑥 𝐻 𝑦 )  ∈  𝑃  →  ( 𝑎  ⊆  𝑃  ∨  𝑏  ⊆  𝑃 ) )  →  ( ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( 𝑥 𝐻 𝑦 )  ∈  𝑃  →  ( 𝐴  ⊆  𝑃  ∨  𝐵  ⊆  𝑃 ) ) ) ) | 
						
							| 18 | 7 17 | syl5com | ⊢ ( ( 𝑅  ∈  RingOps  ∧  𝑃  ∈  ( PrIdl ‘ 𝑅 ) )  →  ( ( 𝐴  ∈  ( Idl ‘ 𝑅 )  ∧  𝐵  ∈  ( Idl ‘ 𝑅 ) )  →  ( ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( 𝑥 𝐻 𝑦 )  ∈  𝑃  →  ( 𝐴  ⊆  𝑃  ∨  𝐵  ⊆  𝑃 ) ) ) ) | 
						
							| 19 | 18 | expd | ⊢ ( ( 𝑅  ∈  RingOps  ∧  𝑃  ∈  ( PrIdl ‘ 𝑅 ) )  →  ( 𝐴  ∈  ( Idl ‘ 𝑅 )  →  ( 𝐵  ∈  ( Idl ‘ 𝑅 )  →  ( ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( 𝑥 𝐻 𝑦 )  ∈  𝑃  →  ( 𝐴  ⊆  𝑃  ∨  𝐵  ⊆  𝑃 ) ) ) ) ) | 
						
							| 20 | 19 | 3imp2 | ⊢ ( ( ( 𝑅  ∈  RingOps  ∧  𝑃  ∈  ( PrIdl ‘ 𝑅 ) )  ∧  ( 𝐴  ∈  ( Idl ‘ 𝑅 )  ∧  𝐵  ∈  ( Idl ‘ 𝑅 )  ∧  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐵 ( 𝑥 𝐻 𝑦 )  ∈  𝑃 ) )  →  ( 𝐴  ⊆  𝑃  ∨  𝐵  ⊆  𝑃 ) ) |