| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ordtNEW.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
| 2 |
|
ordtNEW.l |
⊢ ≤ = ( ( le ‘ 𝐾 ) ∩ ( 𝐵 × 𝐵 ) ) |
| 3 |
2
|
rneqi |
⊢ ran ≤ = ran ( ( le ‘ 𝐾 ) ∩ ( 𝐵 × 𝐵 ) ) |
| 4 |
3
|
eleq2i |
⊢ ( 𝑥 ∈ ran ≤ ↔ 𝑥 ∈ ran ( ( le ‘ 𝐾 ) ∩ ( 𝐵 × 𝐵 ) ) ) |
| 5 |
|
vex |
⊢ 𝑥 ∈ V |
| 6 |
5
|
elrn2 |
⊢ ( 𝑥 ∈ ran ( ( le ‘ 𝐾 ) ∩ ( 𝐵 × 𝐵 ) ) ↔ ∃ 𝑦 〈 𝑦 , 𝑥 〉 ∈ ( ( le ‘ 𝐾 ) ∩ ( 𝐵 × 𝐵 ) ) ) |
| 7 |
|
eqid |
⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) |
| 8 |
1 7
|
prsref |
⊢ ( ( 𝐾 ∈ Proset ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ( le ‘ 𝐾 ) 𝑥 ) |
| 9 |
|
df-br |
⊢ ( 𝑥 ( le ‘ 𝐾 ) 𝑥 ↔ 〈 𝑥 , 𝑥 〉 ∈ ( le ‘ 𝐾 ) ) |
| 10 |
8 9
|
sylib |
⊢ ( ( 𝐾 ∈ Proset ∧ 𝑥 ∈ 𝐵 ) → 〈 𝑥 , 𝑥 〉 ∈ ( le ‘ 𝐾 ) ) |
| 11 |
|
simpr |
⊢ ( ( 𝐾 ∈ Proset ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ 𝐵 ) |
| 12 |
11 11
|
opelxpd |
⊢ ( ( 𝐾 ∈ Proset ∧ 𝑥 ∈ 𝐵 ) → 〈 𝑥 , 𝑥 〉 ∈ ( 𝐵 × 𝐵 ) ) |
| 13 |
10 12
|
elind |
⊢ ( ( 𝐾 ∈ Proset ∧ 𝑥 ∈ 𝐵 ) → 〈 𝑥 , 𝑥 〉 ∈ ( ( le ‘ 𝐾 ) ∩ ( 𝐵 × 𝐵 ) ) ) |
| 14 |
|
opeq1 |
⊢ ( 𝑦 = 𝑥 → 〈 𝑦 , 𝑥 〉 = 〈 𝑥 , 𝑥 〉 ) |
| 15 |
14
|
eleq1d |
⊢ ( 𝑦 = 𝑥 → ( 〈 𝑦 , 𝑥 〉 ∈ ( ( le ‘ 𝐾 ) ∩ ( 𝐵 × 𝐵 ) ) ↔ 〈 𝑥 , 𝑥 〉 ∈ ( ( le ‘ 𝐾 ) ∩ ( 𝐵 × 𝐵 ) ) ) ) |
| 16 |
5 15
|
spcev |
⊢ ( 〈 𝑥 , 𝑥 〉 ∈ ( ( le ‘ 𝐾 ) ∩ ( 𝐵 × 𝐵 ) ) → ∃ 𝑦 〈 𝑦 , 𝑥 〉 ∈ ( ( le ‘ 𝐾 ) ∩ ( 𝐵 × 𝐵 ) ) ) |
| 17 |
13 16
|
syl |
⊢ ( ( 𝐾 ∈ Proset ∧ 𝑥 ∈ 𝐵 ) → ∃ 𝑦 〈 𝑦 , 𝑥 〉 ∈ ( ( le ‘ 𝐾 ) ∩ ( 𝐵 × 𝐵 ) ) ) |
| 18 |
17
|
ex |
⊢ ( 𝐾 ∈ Proset → ( 𝑥 ∈ 𝐵 → ∃ 𝑦 〈 𝑦 , 𝑥 〉 ∈ ( ( le ‘ 𝐾 ) ∩ ( 𝐵 × 𝐵 ) ) ) ) |
| 19 |
|
elinel2 |
⊢ ( 〈 𝑦 , 𝑥 〉 ∈ ( ( le ‘ 𝐾 ) ∩ ( 𝐵 × 𝐵 ) ) → 〈 𝑦 , 𝑥 〉 ∈ ( 𝐵 × 𝐵 ) ) |
| 20 |
|
opelxp2 |
⊢ ( 〈 𝑦 , 𝑥 〉 ∈ ( 𝐵 × 𝐵 ) → 𝑥 ∈ 𝐵 ) |
| 21 |
19 20
|
syl |
⊢ ( 〈 𝑦 , 𝑥 〉 ∈ ( ( le ‘ 𝐾 ) ∩ ( 𝐵 × 𝐵 ) ) → 𝑥 ∈ 𝐵 ) |
| 22 |
21
|
exlimiv |
⊢ ( ∃ 𝑦 〈 𝑦 , 𝑥 〉 ∈ ( ( le ‘ 𝐾 ) ∩ ( 𝐵 × 𝐵 ) ) → 𝑥 ∈ 𝐵 ) |
| 23 |
18 22
|
impbid1 |
⊢ ( 𝐾 ∈ Proset → ( 𝑥 ∈ 𝐵 ↔ ∃ 𝑦 〈 𝑦 , 𝑥 〉 ∈ ( ( le ‘ 𝐾 ) ∩ ( 𝐵 × 𝐵 ) ) ) ) |
| 24 |
6 23
|
bitr4id |
⊢ ( 𝐾 ∈ Proset → ( 𝑥 ∈ ran ( ( le ‘ 𝐾 ) ∩ ( 𝐵 × 𝐵 ) ) ↔ 𝑥 ∈ 𝐵 ) ) |
| 25 |
4 24
|
bitrid |
⊢ ( 𝐾 ∈ Proset → ( 𝑥 ∈ ran ≤ ↔ 𝑥 ∈ 𝐵 ) ) |
| 26 |
25
|
eqrdv |
⊢ ( 𝐾 ∈ Proset → ran ≤ = 𝐵 ) |