Metamath Proof Explorer


Theorem psrbagev1OLD

Description: Obsolete version of psrbagev1 as of 7-Aug-2024. (Contributed by Stefan O'Rear, 9-Mar-2015) (Revised by AV, 18-Jul-2019) (Revised by AV, 11-Apr-2024) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses psrbagev1.d 𝐷 = { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin }
psrbagev1.c 𝐶 = ( Base ‘ 𝑇 )
psrbagev1.x · = ( .g𝑇 )
psrbagev1.z 0 = ( 0g𝑇 )
psrbagev1.t ( 𝜑𝑇 ∈ CMnd )
psrbagev1.b ( 𝜑𝐵𝐷 )
psrbagev1.g ( 𝜑𝐺 : 𝐼𝐶 )
psrbagev1.i ( 𝜑𝐼𝑊 )
Assertion psrbagev1OLD ( 𝜑 → ( ( 𝐵f · 𝐺 ) : 𝐼𝐶 ∧ ( 𝐵f · 𝐺 ) finSupp 0 ) )

Proof

Step Hyp Ref Expression
1 psrbagev1.d 𝐷 = { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin }
2 psrbagev1.c 𝐶 = ( Base ‘ 𝑇 )
3 psrbagev1.x · = ( .g𝑇 )
4 psrbagev1.z 0 = ( 0g𝑇 )
5 psrbagev1.t ( 𝜑𝑇 ∈ CMnd )
6 psrbagev1.b ( 𝜑𝐵𝐷 )
7 psrbagev1.g ( 𝜑𝐺 : 𝐼𝐶 )
8 psrbagev1.i ( 𝜑𝐼𝑊 )
9 5 cmnmndd ( 𝜑𝑇 ∈ Mnd )
10 2 3 mulgnn0cl ( ( 𝑇 ∈ Mnd ∧ 𝑦 ∈ ℕ0𝑧𝐶 ) → ( 𝑦 · 𝑧 ) ∈ 𝐶 )
11 10 3expb ( ( 𝑇 ∈ Mnd ∧ ( 𝑦 ∈ ℕ0𝑧𝐶 ) ) → ( 𝑦 · 𝑧 ) ∈ 𝐶 )
12 9 11 sylan ( ( 𝜑 ∧ ( 𝑦 ∈ ℕ0𝑧𝐶 ) ) → ( 𝑦 · 𝑧 ) ∈ 𝐶 )
13 1 psrbagfOLD ( ( 𝐼𝑊𝐵𝐷 ) → 𝐵 : 𝐼 ⟶ ℕ0 )
14 8 6 13 syl2anc ( 𝜑𝐵 : 𝐼 ⟶ ℕ0 )
15 inidm ( 𝐼𝐼 ) = 𝐼
16 12 14 7 8 8 15 off ( 𝜑 → ( 𝐵f · 𝐺 ) : 𝐼𝐶 )
17 ovexd ( 𝜑 → ( 𝐵f · 𝐺 ) ∈ V )
18 14 ffnd ( 𝜑𝐵 Fn 𝐼 )
19 7 ffnd ( 𝜑𝐺 Fn 𝐼 )
20 18 19 8 8 offun ( 𝜑 → Fun ( 𝐵f · 𝐺 ) )
21 4 fvexi 0 ∈ V
22 21 a1i ( 𝜑0 ∈ V )
23 1 psrbagfsuppOLD ( ( 𝐵𝐷𝐼𝑊 ) → 𝐵 finSupp 0 )
24 6 8 23 syl2anc ( 𝜑𝐵 finSupp 0 )
25 24 fsuppimpd ( 𝜑 → ( 𝐵 supp 0 ) ∈ Fin )
26 ssidd ( 𝜑 → ( 𝐵 supp 0 ) ⊆ ( 𝐵 supp 0 ) )
27 2 4 3 mulg0 ( 𝑧𝐶 → ( 0 · 𝑧 ) = 0 )
28 27 adantl ( ( 𝜑𝑧𝐶 ) → ( 0 · 𝑧 ) = 0 )
29 c0ex 0 ∈ V
30 29 a1i ( 𝜑 → 0 ∈ V )
31 26 28 14 7 8 30 suppssof1 ( 𝜑 → ( ( 𝐵f · 𝐺 ) supp 0 ) ⊆ ( 𝐵 supp 0 ) )
32 suppssfifsupp ( ( ( ( 𝐵f · 𝐺 ) ∈ V ∧ Fun ( 𝐵f · 𝐺 ) ∧ 0 ∈ V ) ∧ ( ( 𝐵 supp 0 ) ∈ Fin ∧ ( ( 𝐵f · 𝐺 ) supp 0 ) ⊆ ( 𝐵 supp 0 ) ) ) → ( 𝐵f · 𝐺 ) finSupp 0 )
33 17 20 22 25 31 32 syl32anc ( 𝜑 → ( 𝐵f · 𝐺 ) finSupp 0 )
34 16 33 jca ( 𝜑 → ( ( 𝐵f · 𝐺 ) : 𝐼𝐶 ∧ ( 𝐵f · 𝐺 ) finSupp 0 ) )