| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ptopn2.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
| 2 |
|
ptopn2.f |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ Top ) |
| 3 |
|
ptopn2.o |
⊢ ( 𝜑 → 𝑂 ∈ ( 𝐹 ‘ 𝑌 ) ) |
| 4 |
|
snfi |
⊢ { 𝑌 } ∈ Fin |
| 5 |
4
|
a1i |
⊢ ( 𝜑 → { 𝑌 } ∈ Fin ) |
| 6 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝑂 ∈ ( 𝐹 ‘ 𝑌 ) ) |
| 7 |
|
fveq2 |
⊢ ( 𝑘 = 𝑌 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑌 ) ) |
| 8 |
7
|
eleq2d |
⊢ ( 𝑘 = 𝑌 → ( 𝑂 ∈ ( 𝐹 ‘ 𝑘 ) ↔ 𝑂 ∈ ( 𝐹 ‘ 𝑌 ) ) ) |
| 9 |
6 8
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝑘 = 𝑌 → 𝑂 ∈ ( 𝐹 ‘ 𝑘 ) ) ) |
| 10 |
9
|
imp |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ 𝑘 = 𝑌 ) → 𝑂 ∈ ( 𝐹 ‘ 𝑘 ) ) |
| 11 |
2
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑘 ) ∈ Top ) |
| 12 |
|
eqid |
⊢ ∪ ( 𝐹 ‘ 𝑘 ) = ∪ ( 𝐹 ‘ 𝑘 ) |
| 13 |
12
|
topopn |
⊢ ( ( 𝐹 ‘ 𝑘 ) ∈ Top → ∪ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝐹 ‘ 𝑘 ) ) |
| 14 |
11 13
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ∪ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝐹 ‘ 𝑘 ) ) |
| 15 |
14
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ∧ ¬ 𝑘 = 𝑌 ) → ∪ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝐹 ‘ 𝑘 ) ) |
| 16 |
10 15
|
ifclda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → if ( 𝑘 = 𝑌 , 𝑂 , ∪ ( 𝐹 ‘ 𝑘 ) ) ∈ ( 𝐹 ‘ 𝑘 ) ) |
| 17 |
|
eldifn |
⊢ ( 𝑘 ∈ ( 𝐴 ∖ { 𝑌 } ) → ¬ 𝑘 ∈ { 𝑌 } ) |
| 18 |
|
velsn |
⊢ ( 𝑘 ∈ { 𝑌 } ↔ 𝑘 = 𝑌 ) |
| 19 |
17 18
|
sylnib |
⊢ ( 𝑘 ∈ ( 𝐴 ∖ { 𝑌 } ) → ¬ 𝑘 = 𝑌 ) |
| 20 |
19
|
iffalsed |
⊢ ( 𝑘 ∈ ( 𝐴 ∖ { 𝑌 } ) → if ( 𝑘 = 𝑌 , 𝑂 , ∪ ( 𝐹 ‘ 𝑘 ) ) = ∪ ( 𝐹 ‘ 𝑘 ) ) |
| 21 |
20
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∖ { 𝑌 } ) ) → if ( 𝑘 = 𝑌 , 𝑂 , ∪ ( 𝐹 ‘ 𝑘 ) ) = ∪ ( 𝐹 ‘ 𝑘 ) ) |
| 22 |
1 2 5 16 21
|
ptopn |
⊢ ( 𝜑 → X 𝑘 ∈ 𝐴 if ( 𝑘 = 𝑌 , 𝑂 , ∪ ( 𝐹 ‘ 𝑘 ) ) ∈ ( ∏t ‘ 𝐹 ) ) |