| Step |
Hyp |
Ref |
Expression |
| 1 |
|
qcvs.q |
⊢ 𝑄 = ( ringLMod ‘ ( ℂfld ↾s ℚ ) ) |
| 2 |
|
qsubdrg |
⊢ ( ℚ ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂfld ↾s ℚ ) ∈ DivRing ) |
| 3 |
|
drngring |
⊢ ( ( ℂfld ↾s ℚ ) ∈ DivRing → ( ℂfld ↾s ℚ ) ∈ Ring ) |
| 4 |
3
|
adantl |
⊢ ( ( ℚ ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂfld ↾s ℚ ) ∈ DivRing ) → ( ℂfld ↾s ℚ ) ∈ Ring ) |
| 5 |
2 4
|
ax-mp |
⊢ ( ℂfld ↾s ℚ ) ∈ Ring |
| 6 |
|
rlmlmod |
⊢ ( ( ℂfld ↾s ℚ ) ∈ Ring → ( ringLMod ‘ ( ℂfld ↾s ℚ ) ) ∈ LMod ) |
| 7 |
5 6
|
ax-mp |
⊢ ( ringLMod ‘ ( ℂfld ↾s ℚ ) ) ∈ LMod |
| 8 |
2
|
simpri |
⊢ ( ℂfld ↾s ℚ ) ∈ DivRing |
| 9 |
|
rlmsca |
⊢ ( ( ℂfld ↾s ℚ ) ∈ DivRing → ( ℂfld ↾s ℚ ) = ( Scalar ‘ ( ringLMod ‘ ( ℂfld ↾s ℚ ) ) ) ) |
| 10 |
9
|
eqcomd |
⊢ ( ( ℂfld ↾s ℚ ) ∈ DivRing → ( Scalar ‘ ( ringLMod ‘ ( ℂfld ↾s ℚ ) ) ) = ( ℂfld ↾s ℚ ) ) |
| 11 |
8 10
|
ax-mp |
⊢ ( Scalar ‘ ( ringLMod ‘ ( ℂfld ↾s ℚ ) ) ) = ( ℂfld ↾s ℚ ) |
| 12 |
2
|
simpli |
⊢ ℚ ∈ ( SubRing ‘ ℂfld ) |
| 13 |
|
eqid |
⊢ ( Scalar ‘ ( ringLMod ‘ ( ℂfld ↾s ℚ ) ) ) = ( Scalar ‘ ( ringLMod ‘ ( ℂfld ↾s ℚ ) ) ) |
| 14 |
13
|
isclmi |
⊢ ( ( ( ringLMod ‘ ( ℂfld ↾s ℚ ) ) ∈ LMod ∧ ( Scalar ‘ ( ringLMod ‘ ( ℂfld ↾s ℚ ) ) ) = ( ℂfld ↾s ℚ ) ∧ ℚ ∈ ( SubRing ‘ ℂfld ) ) → ( ringLMod ‘ ( ℂfld ↾s ℚ ) ) ∈ ℂMod ) |
| 15 |
7 11 12 14
|
mp3an |
⊢ ( ringLMod ‘ ( ℂfld ↾s ℚ ) ) ∈ ℂMod |
| 16 |
|
rlmlvec |
⊢ ( ( ℂfld ↾s ℚ ) ∈ DivRing → ( ringLMod ‘ ( ℂfld ↾s ℚ ) ) ∈ LVec ) |
| 17 |
8 16
|
ax-mp |
⊢ ( ringLMod ‘ ( ℂfld ↾s ℚ ) ) ∈ LVec |
| 18 |
15 17
|
elini |
⊢ ( ringLMod ‘ ( ℂfld ↾s ℚ ) ) ∈ ( ℂMod ∩ LVec ) |
| 19 |
|
df-cvs |
⊢ ℂVec = ( ℂMod ∩ LVec ) |
| 20 |
18 1 19
|
3eltr4i |
⊢ 𝑄 ∈ ℂVec |