Metamath Proof Explorer


Theorem zclmncvs

Description: The ring of integers as left module over itself is a subcomplex module, but not a subcomplex vector space. The vector operation is + , and the scalar product is x. . (Contributed by AV, 22-Oct-2021)

Ref Expression
Hypothesis zclmncvs.z 𝑍 = ( ringLMod ‘ ℤring )
Assertion zclmncvs ( 𝑍 ∈ ℂMod ∧ 𝑍 ∉ ℂVec )

Proof

Step Hyp Ref Expression
1 zclmncvs.z 𝑍 = ( ringLMod ‘ ℤring )
2 zringring ring ∈ Ring
3 rlmlmod ( ℤring ∈ Ring → ( ringLMod ‘ ℤring ) ∈ LMod )
4 2 3 ax-mp ( ringLMod ‘ ℤring ) ∈ LMod
5 rlmsca ( ℤring ∈ Ring → ℤring = ( Scalar ‘ ( ringLMod ‘ ℤring ) ) )
6 2 5 ax-mp ring = ( Scalar ‘ ( ringLMod ‘ ℤring ) )
7 df-zring ring = ( ℂflds ℤ )
8 6 7 eqtr3i ( Scalar ‘ ( ringLMod ‘ ℤring ) ) = ( ℂflds ℤ )
9 zsubrg ℤ ∈ ( SubRing ‘ ℂfld )
10 eqid ( Scalar ‘ ( ringLMod ‘ ℤring ) ) = ( Scalar ‘ ( ringLMod ‘ ℤring ) )
11 10 isclmi ( ( ( ringLMod ‘ ℤring ) ∈ LMod ∧ ( Scalar ‘ ( ringLMod ‘ ℤring ) ) = ( ℂflds ℤ ) ∧ ℤ ∈ ( SubRing ‘ ℂfld ) ) → ( ringLMod ‘ ℤring ) ∈ ℂMod )
12 4 8 9 11 mp3an ( ringLMod ‘ ℤring ) ∈ ℂMod
13 1 eleq1i ( 𝑍 ∈ ℂMod ↔ ( ringLMod ‘ ℤring ) ∈ ℂMod )
14 12 13 mpbir 𝑍 ∈ ℂMod
15 zringndrg ring ∉ DivRing
16 15 neli ¬ ℤring ∈ DivRing
17 5 eqcomd ( ℤring ∈ Ring → ( Scalar ‘ ( ringLMod ‘ ℤring ) ) = ℤring )
18 2 17 ax-mp ( Scalar ‘ ( ringLMod ‘ ℤring ) ) = ℤring
19 18 eleq1i ( ( Scalar ‘ ( ringLMod ‘ ℤring ) ) ∈ DivRing ↔ ℤring ∈ DivRing )
20 16 19 mtbir ¬ ( Scalar ‘ ( ringLMod ‘ ℤring ) ) ∈ DivRing
21 20 intnan ¬ ( ( ringLMod ‘ ℤring ) ∈ LMod ∧ ( Scalar ‘ ( ringLMod ‘ ℤring ) ) ∈ DivRing )
22 10 islvec ( ( ringLMod ‘ ℤring ) ∈ LVec ↔ ( ( ringLMod ‘ ℤring ) ∈ LMod ∧ ( Scalar ‘ ( ringLMod ‘ ℤring ) ) ∈ DivRing ) )
23 21 22 mtbir ¬ ( ringLMod ‘ ℤring ) ∈ LVec
24 23 olci ( ¬ ( ringLMod ‘ ℤring ) ∈ ℂMod ∨ ¬ ( ringLMod ‘ ℤring ) ∈ LVec )
25 df-nel ( 𝑍 ∉ ℂVec ↔ ¬ 𝑍 ∈ ℂVec )
26 ianor ( ¬ ( ( ringLMod ‘ ℤring ) ∈ ℂMod ∧ ( ringLMod ‘ ℤring ) ∈ LVec ) ↔ ( ¬ ( ringLMod ‘ ℤring ) ∈ ℂMod ∨ ¬ ( ringLMod ‘ ℤring ) ∈ LVec ) )
27 elin ( ( ringLMod ‘ ℤring ) ∈ ( ℂMod ∩ LVec ) ↔ ( ( ringLMod ‘ ℤring ) ∈ ℂMod ∧ ( ringLMod ‘ ℤring ) ∈ LVec ) )
28 26 27 xchnxbir ( ¬ ( ringLMod ‘ ℤring ) ∈ ( ℂMod ∩ LVec ) ↔ ( ¬ ( ringLMod ‘ ℤring ) ∈ ℂMod ∨ ¬ ( ringLMod ‘ ℤring ) ∈ LVec ) )
29 df-cvs ℂVec = ( ℂMod ∩ LVec )
30 1 29 eleq12i ( 𝑍 ∈ ℂVec ↔ ( ringLMod ‘ ℤring ) ∈ ( ℂMod ∩ LVec ) )
31 28 30 xchnxbir ( ¬ 𝑍 ∈ ℂVec ↔ ( ¬ ( ringLMod ‘ ℤring ) ∈ ℂMod ∨ ¬ ( ringLMod ‘ ℤring ) ∈ LVec ) )
32 25 31 bitri ( 𝑍 ∉ ℂVec ↔ ( ¬ ( ringLMod ‘ ℤring ) ∈ ℂMod ∨ ¬ ( ringLMod ‘ ℤring ) ∈ LVec ) )
33 24 32 mpbir 𝑍 ∉ ℂVec
34 14 33 pm3.2i ( 𝑍 ∈ ℂMod ∧ 𝑍 ∉ ℂVec )