Metamath Proof Explorer


Theorem zclmncvs

Description: The ring of integers as left module over itself is a subcomplex module, but not a subcomplex vector space. The vector operation is + , and the scalar product is x. . (Contributed by AV, 22-Oct-2021)

Ref Expression
Hypothesis zclmncvs.z Z=ringLModring
Assertion zclmncvs ZCModZℂVec

Proof

Step Hyp Ref Expression
1 zclmncvs.z Z=ringLModring
2 zringring ringRing
3 rlmlmod ringRingringLModringLMod
4 2 3 ax-mp ringLModringLMod
5 rlmsca ringRingring=ScalarringLModring
6 2 5 ax-mp ring=ScalarringLModring
7 df-zring ring=fld𝑠
8 6 7 eqtr3i ScalarringLModring=fld𝑠
9 zsubrg SubRingfld
10 eqid ScalarringLModring=ScalarringLModring
11 10 isclmi ringLModringLModScalarringLModring=fld𝑠SubRingfldringLModringCMod
12 4 8 9 11 mp3an ringLModringCMod
13 1 eleq1i ZCModringLModringCMod
14 12 13 mpbir ZCMod
15 zringndrg ringDivRing
16 15 neli ¬ringDivRing
17 5 eqcomd ringRingScalarringLModring=ring
18 2 17 ax-mp ScalarringLModring=ring
19 18 eleq1i ScalarringLModringDivRingringDivRing
20 16 19 mtbir ¬ScalarringLModringDivRing
21 20 intnan ¬ringLModringLModScalarringLModringDivRing
22 10 islvec ringLModringLVecringLModringLModScalarringLModringDivRing
23 21 22 mtbir ¬ringLModringLVec
24 23 olci ¬ringLModringCMod¬ringLModringLVec
25 df-nel ZℂVec¬ZℂVec
26 ianor ¬ringLModringCModringLModringLVec¬ringLModringCMod¬ringLModringLVec
27 elin ringLModringCModLVecringLModringCModringLModringLVec
28 26 27 xchnxbir ¬ringLModringCModLVec¬ringLModringCMod¬ringLModringLVec
29 df-cvs ℂVec=CModLVec
30 1 29 eleq12i ZℂVecringLModringCModLVec
31 28 30 xchnxbir ¬ZℂVec¬ringLModringCMod¬ringLModringLVec
32 25 31 bitri ZℂVec¬ringLModringCMod¬ringLModringLVec
33 24 32 mpbir ZℂVec
34 14 33 pm3.2i ZCModZℂVec