Description: The ring of integers as left module over itself is a subcomplex module, but not a subcomplex vector space. The vector operation is + , and the scalar product is x. . (Contributed by AV, 22-Oct-2021)
Ref | Expression | ||
---|---|---|---|
Hypothesis | zclmncvs.z | |
|
Assertion | zclmncvs | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zclmncvs.z | |
|
2 | zringring | |
|
3 | rlmlmod | |
|
4 | 2 3 | ax-mp | |
5 | rlmsca | |
|
6 | 2 5 | ax-mp | |
7 | df-zring | |
|
8 | 6 7 | eqtr3i | |
9 | zsubrg | |
|
10 | eqid | |
|
11 | 10 | isclmi | |
12 | 4 8 9 11 | mp3an | |
13 | 1 | eleq1i | |
14 | 12 13 | mpbir | |
15 | zringndrg | |
|
16 | 15 | neli | |
17 | 5 | eqcomd | |
18 | 2 17 | ax-mp | |
19 | 18 | eleq1i | |
20 | 16 19 | mtbir | |
21 | 20 | intnan | |
22 | 10 | islvec | |
23 | 21 22 | mtbir | |
24 | 23 | olci | |
25 | df-nel | |
|
26 | ianor | |
|
27 | elin | |
|
28 | 26 27 | xchnxbir | |
29 | df-cvs | |
|
30 | 1 29 | eleq12i | |
31 | 28 30 | xchnxbir | |
32 | 25 31 | bitri | |
33 | 24 32 | mpbir | |
34 | 14 33 | pm3.2i | |