| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zclmncvs.z |  |-  Z = ( ringLMod ` ZZring ) | 
						
							| 2 |  | zringring |  |-  ZZring e. Ring | 
						
							| 3 |  | rlmlmod |  |-  ( ZZring e. Ring -> ( ringLMod ` ZZring ) e. LMod ) | 
						
							| 4 | 2 3 | ax-mp |  |-  ( ringLMod ` ZZring ) e. LMod | 
						
							| 5 |  | rlmsca |  |-  ( ZZring e. Ring -> ZZring = ( Scalar ` ( ringLMod ` ZZring ) ) ) | 
						
							| 6 | 2 5 | ax-mp |  |-  ZZring = ( Scalar ` ( ringLMod ` ZZring ) ) | 
						
							| 7 |  | df-zring |  |-  ZZring = ( CCfld |`s ZZ ) | 
						
							| 8 | 6 7 | eqtr3i |  |-  ( Scalar ` ( ringLMod ` ZZring ) ) = ( CCfld |`s ZZ ) | 
						
							| 9 |  | zsubrg |  |-  ZZ e. ( SubRing ` CCfld ) | 
						
							| 10 |  | eqid |  |-  ( Scalar ` ( ringLMod ` ZZring ) ) = ( Scalar ` ( ringLMod ` ZZring ) ) | 
						
							| 11 | 10 | isclmi |  |-  ( ( ( ringLMod ` ZZring ) e. LMod /\ ( Scalar ` ( ringLMod ` ZZring ) ) = ( CCfld |`s ZZ ) /\ ZZ e. ( SubRing ` CCfld ) ) -> ( ringLMod ` ZZring ) e. CMod ) | 
						
							| 12 | 4 8 9 11 | mp3an |  |-  ( ringLMod ` ZZring ) e. CMod | 
						
							| 13 | 1 | eleq1i |  |-  ( Z e. CMod <-> ( ringLMod ` ZZring ) e. CMod ) | 
						
							| 14 | 12 13 | mpbir |  |-  Z e. CMod | 
						
							| 15 |  | zringndrg |  |-  ZZring e/ DivRing | 
						
							| 16 | 15 | neli |  |-  -. ZZring e. DivRing | 
						
							| 17 | 5 | eqcomd |  |-  ( ZZring e. Ring -> ( Scalar ` ( ringLMod ` ZZring ) ) = ZZring ) | 
						
							| 18 | 2 17 | ax-mp |  |-  ( Scalar ` ( ringLMod ` ZZring ) ) = ZZring | 
						
							| 19 | 18 | eleq1i |  |-  ( ( Scalar ` ( ringLMod ` ZZring ) ) e. DivRing <-> ZZring e. DivRing ) | 
						
							| 20 | 16 19 | mtbir |  |-  -. ( Scalar ` ( ringLMod ` ZZring ) ) e. DivRing | 
						
							| 21 | 20 | intnan |  |-  -. ( ( ringLMod ` ZZring ) e. LMod /\ ( Scalar ` ( ringLMod ` ZZring ) ) e. DivRing ) | 
						
							| 22 | 10 | islvec |  |-  ( ( ringLMod ` ZZring ) e. LVec <-> ( ( ringLMod ` ZZring ) e. LMod /\ ( Scalar ` ( ringLMod ` ZZring ) ) e. DivRing ) ) | 
						
							| 23 | 21 22 | mtbir |  |-  -. ( ringLMod ` ZZring ) e. LVec | 
						
							| 24 | 23 | olci |  |-  ( -. ( ringLMod ` ZZring ) e. CMod \/ -. ( ringLMod ` ZZring ) e. LVec ) | 
						
							| 25 |  | df-nel |  |-  ( Z e/ CVec <-> -. Z e. CVec ) | 
						
							| 26 |  | ianor |  |-  ( -. ( ( ringLMod ` ZZring ) e. CMod /\ ( ringLMod ` ZZring ) e. LVec ) <-> ( -. ( ringLMod ` ZZring ) e. CMod \/ -. ( ringLMod ` ZZring ) e. LVec ) ) | 
						
							| 27 |  | elin |  |-  ( ( ringLMod ` ZZring ) e. ( CMod i^i LVec ) <-> ( ( ringLMod ` ZZring ) e. CMod /\ ( ringLMod ` ZZring ) e. LVec ) ) | 
						
							| 28 | 26 27 | xchnxbir |  |-  ( -. ( ringLMod ` ZZring ) e. ( CMod i^i LVec ) <-> ( -. ( ringLMod ` ZZring ) e. CMod \/ -. ( ringLMod ` ZZring ) e. LVec ) ) | 
						
							| 29 |  | df-cvs |  |-  CVec = ( CMod i^i LVec ) | 
						
							| 30 | 1 29 | eleq12i |  |-  ( Z e. CVec <-> ( ringLMod ` ZZring ) e. ( CMod i^i LVec ) ) | 
						
							| 31 | 28 30 | xchnxbir |  |-  ( -. Z e. CVec <-> ( -. ( ringLMod ` ZZring ) e. CMod \/ -. ( ringLMod ` ZZring ) e. LVec ) ) | 
						
							| 32 | 25 31 | bitri |  |-  ( Z e/ CVec <-> ( -. ( ringLMod ` ZZring ) e. CMod \/ -. ( ringLMod ` ZZring ) e. LVec ) ) | 
						
							| 33 | 24 32 | mpbir |  |-  Z e/ CVec | 
						
							| 34 | 14 33 | pm3.2i |  |-  ( Z e. CMod /\ Z e/ CVec ) |