Metamath Proof Explorer


Theorem r11

Description: Value of the cumulative hierarchy of sets function at 1o . (Contributed by BTernaryTau, 24-Jan-2026)

Ref Expression
Assertion r11 ( 𝑅1 ‘ 1o ) = 1o

Proof

Step Hyp Ref Expression
1 df-1o 1o = suc ∅
2 1 fveq2i ( 𝑅1 ‘ 1o ) = ( 𝑅1 ‘ suc ∅ )
3 r1funlim ( Fun 𝑅1 ∧ Lim dom 𝑅1 )
4 3 simpri Lim dom 𝑅1
5 0ellim ( Lim dom 𝑅1 → ∅ ∈ dom 𝑅1 )
6 r1sucg ( ∅ ∈ dom 𝑅1 → ( 𝑅1 ‘ suc ∅ ) = 𝒫 ( 𝑅1 ‘ ∅ ) )
7 4 5 6 mp2b ( 𝑅1 ‘ suc ∅ ) = 𝒫 ( 𝑅1 ‘ ∅ )
8 pw0 𝒫 ∅ = { ∅ }
9 r10 ( 𝑅1 ‘ ∅ ) = ∅
10 9 pweqi 𝒫 ( 𝑅1 ‘ ∅ ) = 𝒫 ∅
11 df1o2 1o = { ∅ }
12 8 10 11 3eqtr4i 𝒫 ( 𝑅1 ‘ ∅ ) = 1o
13 2 7 12 3eqtri ( 𝑅1 ‘ 1o ) = 1o