Description: Value of the cumulative hierarchy of sets function at 1o . (Contributed by BTernaryTau, 24-Jan-2026)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | r11 | ⊢ ( 𝑅1 ‘ 1o ) = 1o |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-1o | ⊢ 1o = suc ∅ | |
| 2 | 1 | fveq2i | ⊢ ( 𝑅1 ‘ 1o ) = ( 𝑅1 ‘ suc ∅ ) |
| 3 | r1funlim | ⊢ ( Fun 𝑅1 ∧ Lim dom 𝑅1 ) | |
| 4 | 3 | simpri | ⊢ Lim dom 𝑅1 |
| 5 | 0ellim | ⊢ ( Lim dom 𝑅1 → ∅ ∈ dom 𝑅1 ) | |
| 6 | r1sucg | ⊢ ( ∅ ∈ dom 𝑅1 → ( 𝑅1 ‘ suc ∅ ) = 𝒫 ( 𝑅1 ‘ ∅ ) ) | |
| 7 | 4 5 6 | mp2b | ⊢ ( 𝑅1 ‘ suc ∅ ) = 𝒫 ( 𝑅1 ‘ ∅ ) |
| 8 | pw0 | ⊢ 𝒫 ∅ = { ∅ } | |
| 9 | r10 | ⊢ ( 𝑅1 ‘ ∅ ) = ∅ | |
| 10 | 9 | pweqi | ⊢ 𝒫 ( 𝑅1 ‘ ∅ ) = 𝒫 ∅ |
| 11 | df1o2 | ⊢ 1o = { ∅ } | |
| 12 | 8 10 11 | 3eqtr4i | ⊢ 𝒫 ( 𝑅1 ‘ ∅ ) = 1o |
| 13 | 2 7 12 | 3eqtri | ⊢ ( 𝑅1 ‘ 1o ) = 1o |