| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-1o |
|- 1o = suc (/) |
| 2 |
1
|
fveq2i |
|- ( R1 ` 1o ) = ( R1 ` suc (/) ) |
| 3 |
|
r1funlim |
|- ( Fun R1 /\ Lim dom R1 ) |
| 4 |
3
|
simpri |
|- Lim dom R1 |
| 5 |
|
0ellim |
|- ( Lim dom R1 -> (/) e. dom R1 ) |
| 6 |
|
r1sucg |
|- ( (/) e. dom R1 -> ( R1 ` suc (/) ) = ~P ( R1 ` (/) ) ) |
| 7 |
4 5 6
|
mp2b |
|- ( R1 ` suc (/) ) = ~P ( R1 ` (/) ) |
| 8 |
|
pw0 |
|- ~P (/) = { (/) } |
| 9 |
|
r10 |
|- ( R1 ` (/) ) = (/) |
| 10 |
9
|
pweqi |
|- ~P ( R1 ` (/) ) = ~P (/) |
| 11 |
|
df1o2 |
|- 1o = { (/) } |
| 12 |
8 10 11
|
3eqtr4i |
|- ~P ( R1 ` (/) ) = 1o |
| 13 |
2 7 12
|
3eqtri |
|- ( R1 ` 1o ) = 1o |