| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-2o |
|- 2o = suc 1o |
| 2 |
1
|
fveq2i |
|- ( R1 ` 2o ) = ( R1 ` suc 1o ) |
| 3 |
|
r1funlim |
|- ( Fun R1 /\ Lim dom R1 ) |
| 4 |
3
|
simpri |
|- Lim dom R1 |
| 5 |
|
1ellim |
|- ( Lim dom R1 -> 1o e. dom R1 ) |
| 6 |
|
r1sucg |
|- ( 1o e. dom R1 -> ( R1 ` suc 1o ) = ~P ( R1 ` 1o ) ) |
| 7 |
4 5 6
|
mp2b |
|- ( R1 ` suc 1o ) = ~P ( R1 ` 1o ) |
| 8 |
|
pwpw0 |
|- ~P { (/) } = { (/) , { (/) } } |
| 9 |
|
r11 |
|- ( R1 ` 1o ) = 1o |
| 10 |
|
df1o2 |
|- 1o = { (/) } |
| 11 |
9 10
|
eqtri |
|- ( R1 ` 1o ) = { (/) } |
| 12 |
11
|
pweqi |
|- ~P ( R1 ` 1o ) = ~P { (/) } |
| 13 |
|
df2o2 |
|- 2o = { (/) , { (/) } } |
| 14 |
8 12 13
|
3eqtr4i |
|- ~P ( R1 ` 1o ) = 2o |
| 15 |
2 7 14
|
3eqtri |
|- ( R1 ` 2o ) = 2o |