Metamath Proof Explorer


Theorem r12

Description: Value of the cumulative hierarchy of sets function at 2o . (Contributed by BTernaryTau, 25-Jan-2026)

Ref Expression
Assertion r12 R1 2 𝑜 = 2 𝑜

Proof

Step Hyp Ref Expression
1 df-2o 2 𝑜 = suc 1 𝑜
2 1 fveq2i R1 2 𝑜 = R1 suc 1 𝑜
3 r1funlim Fun R1 Lim dom R1
4 3 simpri Lim dom R1
5 1ellim Lim dom R1 1 𝑜 dom R1
6 r1sucg 1 𝑜 dom R1 R1 suc 1 𝑜 = 𝒫 R1 1 𝑜
7 4 5 6 mp2b R1 suc 1 𝑜 = 𝒫 R1 1 𝑜
8 pwpw0 𝒫 =
9 r11 R1 1 𝑜 = 1 𝑜
10 df1o2 1 𝑜 =
11 9 10 eqtri R1 1 𝑜 =
12 11 pweqi 𝒫 R1 1 𝑜 = 𝒫
13 df2o2 2 𝑜 =
14 8 12 13 3eqtr4i 𝒫 R1 1 𝑜 = 2 𝑜
15 2 7 14 3eqtri R1 2 𝑜 = 2 𝑜