Metamath Proof Explorer


Theorem r11

Description: Value of the cumulative hierarchy of sets function at 1o . (Contributed by BTernaryTau, 24-Jan-2026)

Ref Expression
Assertion r11 R1 1 𝑜 = 1 𝑜

Proof

Step Hyp Ref Expression
1 df-1o 1 𝑜 = suc
2 1 fveq2i R1 1 𝑜 = R1 suc
3 r1funlim Fun R1 Lim dom R1
4 3 simpri Lim dom R1
5 0ellim Lim dom R1 dom R1
6 r1sucg dom R1 R1 suc = 𝒫 R1
7 4 5 6 mp2b R1 suc = 𝒫 R1
8 pw0 𝒫 =
9 r10 R1 =
10 9 pweqi 𝒫 R1 = 𝒫
11 df1o2 1 𝑜 =
12 8 10 11 3eqtr4i 𝒫 R1 = 1 𝑜
13 2 7 12 3eqtri R1 1 𝑜 = 1 𝑜