Metamath Proof Explorer


Theorem r12

Description: Value of the cumulative hierarchy of sets function at 2o . (Contributed by BTernaryTau, 25-Jan-2026)

Ref Expression
Assertion r12 ( 𝑅1 ‘ 2o ) = 2o

Proof

Step Hyp Ref Expression
1 df-2o 2o = suc 1o
2 1 fveq2i ( 𝑅1 ‘ 2o ) = ( 𝑅1 ‘ suc 1o )
3 r1funlim ( Fun 𝑅1 ∧ Lim dom 𝑅1 )
4 3 simpri Lim dom 𝑅1
5 1ellim ( Lim dom 𝑅1 → 1o ∈ dom 𝑅1 )
6 r1sucg ( 1o ∈ dom 𝑅1 → ( 𝑅1 ‘ suc 1o ) = 𝒫 ( 𝑅1 ‘ 1o ) )
7 4 5 6 mp2b ( 𝑅1 ‘ suc 1o ) = 𝒫 ( 𝑅1 ‘ 1o )
8 pwpw0 𝒫 { ∅ } = { ∅ , { ∅ } }
9 r11 ( 𝑅1 ‘ 1o ) = 1o
10 df1o2 1o = { ∅ }
11 9 10 eqtri ( 𝑅1 ‘ 1o ) = { ∅ }
12 11 pweqi 𝒫 ( 𝑅1 ‘ 1o ) = 𝒫 { ∅ }
13 df2o2 2o = { ∅ , { ∅ } }
14 8 12 13 3eqtr4i 𝒫 ( 𝑅1 ‘ 1o ) = 2o
15 2 7 14 3eqtri ( 𝑅1 ‘ 2o ) = 2o