| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-2o |
⊢ 2o = suc 1o |
| 2 |
1
|
fveq2i |
⊢ ( 𝑅1 ‘ 2o ) = ( 𝑅1 ‘ suc 1o ) |
| 3 |
|
r1funlim |
⊢ ( Fun 𝑅1 ∧ Lim dom 𝑅1 ) |
| 4 |
3
|
simpri |
⊢ Lim dom 𝑅1 |
| 5 |
|
1ellim |
⊢ ( Lim dom 𝑅1 → 1o ∈ dom 𝑅1 ) |
| 6 |
|
r1sucg |
⊢ ( 1o ∈ dom 𝑅1 → ( 𝑅1 ‘ suc 1o ) = 𝒫 ( 𝑅1 ‘ 1o ) ) |
| 7 |
4 5 6
|
mp2b |
⊢ ( 𝑅1 ‘ suc 1o ) = 𝒫 ( 𝑅1 ‘ 1o ) |
| 8 |
|
pwpw0 |
⊢ 𝒫 { ∅ } = { ∅ , { ∅ } } |
| 9 |
|
r11 |
⊢ ( 𝑅1 ‘ 1o ) = 1o |
| 10 |
|
df1o2 |
⊢ 1o = { ∅ } |
| 11 |
9 10
|
eqtri |
⊢ ( 𝑅1 ‘ 1o ) = { ∅ } |
| 12 |
11
|
pweqi |
⊢ 𝒫 ( 𝑅1 ‘ 1o ) = 𝒫 { ∅ } |
| 13 |
|
df2o2 |
⊢ 2o = { ∅ , { ∅ } } |
| 14 |
8 12 13
|
3eqtr4i |
⊢ 𝒫 ( 𝑅1 ‘ 1o ) = 2o |
| 15 |
2 7 14
|
3eqtri |
⊢ ( 𝑅1 ‘ 2o ) = 2o |