Database ELEMENTARY NUMBER THEORY Elementary prime number theory Ramsey's theorem ramxrcl  
				
		 
		
			
		 
		Description:   The Ramsey number is an extended real number.  (This theorem does not
     imply Ramsey's theorem, unlike ramcl  .)  (Contributed by Mario Carneiro , 20-Apr-2015) 
		
			
				
					Ref 
					Expression 
				 
				
					Assertion 
					ramxrcl ⊢   ( ( 𝑀   ∈  ℕ0   ∧  𝑅   ∈  𝑉   ∧  𝐹  : 𝑅  ⟶ ℕ0  )  →  ( 𝑀   Ramsey  𝐹  )  ∈  ℝ*  )  
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							nn0ssre ⊢  ℕ0   ⊆  ℝ  
						
							2 
								
							 
							ressxr ⊢  ℝ  ⊆  ℝ*   
						
							3 
								1  2 
							 
							sstri ⊢  ℕ0   ⊆  ℝ*   
						
							4 
								
							 
							pnfxr ⊢  +∞  ∈  ℝ*   
						
							5 
								
							 
							snssi ⊢  ( +∞  ∈  ℝ*   →  { +∞ }  ⊆  ℝ*  )  
						
							6 
								4  5 
							 
							ax-mp ⊢  { +∞ }  ⊆  ℝ*   
						
							7 
								3  6 
							 
							unssi ⊢  ( ℕ0   ∪  { +∞ } )  ⊆  ℝ*   
						
							8 
								
							 
							ramcl2 ⊢  ( ( 𝑀   ∈  ℕ0   ∧  𝑅   ∈  𝑉   ∧  𝐹  : 𝑅  ⟶ ℕ0  )  →  ( 𝑀   Ramsey  𝐹  )  ∈  ( ℕ0   ∪  { +∞ } ) )  
						
							9 
								7  8 
							 
							sselid ⊢  ( ( 𝑀   ∈  ℕ0   ∧  𝑅   ∈  𝑉   ∧  𝐹  : 𝑅  ⟶ ℕ0  )  →  ( 𝑀   Ramsey  𝐹  )  ∈  ℝ*  )