Metamath Proof Explorer


Theorem ramubcl

Description: If the Ramsey number is upper bounded, then it is an integer. (Contributed by Mario Carneiro, 20-Apr-2015)

Ref Expression
Assertion ramubcl ( ( ( 𝑀 ∈ ℕ0𝑅𝑉𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ( 𝐴 ∈ ℕ0 ∧ ( 𝑀 Ramsey 𝐹 ) ≤ 𝐴 ) ) → ( 𝑀 Ramsey 𝐹 ) ∈ ℕ0 )

Proof

Step Hyp Ref Expression
1 nn0re ( 𝐴 ∈ ℕ0𝐴 ∈ ℝ )
2 ltpnf ( 𝐴 ∈ ℝ → 𝐴 < +∞ )
3 rexr ( 𝐴 ∈ ℝ → 𝐴 ∈ ℝ* )
4 pnfxr +∞ ∈ ℝ*
5 xrltnle ( ( 𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( 𝐴 < +∞ ↔ ¬ +∞ ≤ 𝐴 ) )
6 3 4 5 sylancl ( 𝐴 ∈ ℝ → ( 𝐴 < +∞ ↔ ¬ +∞ ≤ 𝐴 ) )
7 2 6 mpbid ( 𝐴 ∈ ℝ → ¬ +∞ ≤ 𝐴 )
8 1 7 syl ( 𝐴 ∈ ℕ0 → ¬ +∞ ≤ 𝐴 )
9 8 ad2antrl ( ( ( 𝑀 ∈ ℕ0𝑅𝑉𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ( 𝐴 ∈ ℕ0 ∧ ( 𝑀 Ramsey 𝐹 ) ≤ 𝐴 ) ) → ¬ +∞ ≤ 𝐴 )
10 simprr ( ( ( 𝑀 ∈ ℕ0𝑅𝑉𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ( 𝐴 ∈ ℕ0 ∧ ( 𝑀 Ramsey 𝐹 ) ≤ 𝐴 ) ) → ( 𝑀 Ramsey 𝐹 ) ≤ 𝐴 )
11 breq1 ( ( 𝑀 Ramsey 𝐹 ) = +∞ → ( ( 𝑀 Ramsey 𝐹 ) ≤ 𝐴 ↔ +∞ ≤ 𝐴 ) )
12 10 11 syl5ibcom ( ( ( 𝑀 ∈ ℕ0𝑅𝑉𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ( 𝐴 ∈ ℕ0 ∧ ( 𝑀 Ramsey 𝐹 ) ≤ 𝐴 ) ) → ( ( 𝑀 Ramsey 𝐹 ) = +∞ → +∞ ≤ 𝐴 ) )
13 9 12 mtod ( ( ( 𝑀 ∈ ℕ0𝑅𝑉𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ( 𝐴 ∈ ℕ0 ∧ ( 𝑀 Ramsey 𝐹 ) ≤ 𝐴 ) ) → ¬ ( 𝑀 Ramsey 𝐹 ) = +∞ )
14 elsni ( ( 𝑀 Ramsey 𝐹 ) ∈ { +∞ } → ( 𝑀 Ramsey 𝐹 ) = +∞ )
15 13 14 nsyl ( ( ( 𝑀 ∈ ℕ0𝑅𝑉𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ( 𝐴 ∈ ℕ0 ∧ ( 𝑀 Ramsey 𝐹 ) ≤ 𝐴 ) ) → ¬ ( 𝑀 Ramsey 𝐹 ) ∈ { +∞ } )
16 ramcl2 ( ( 𝑀 ∈ ℕ0𝑅𝑉𝐹 : 𝑅 ⟶ ℕ0 ) → ( 𝑀 Ramsey 𝐹 ) ∈ ( ℕ0 ∪ { +∞ } ) )
17 16 adantr ( ( ( 𝑀 ∈ ℕ0𝑅𝑉𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ( 𝐴 ∈ ℕ0 ∧ ( 𝑀 Ramsey 𝐹 ) ≤ 𝐴 ) ) → ( 𝑀 Ramsey 𝐹 ) ∈ ( ℕ0 ∪ { +∞ } ) )
18 elun ( ( 𝑀 Ramsey 𝐹 ) ∈ ( ℕ0 ∪ { +∞ } ) ↔ ( ( 𝑀 Ramsey 𝐹 ) ∈ ℕ0 ∨ ( 𝑀 Ramsey 𝐹 ) ∈ { +∞ } ) )
19 17 18 sylib ( ( ( 𝑀 ∈ ℕ0𝑅𝑉𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ( 𝐴 ∈ ℕ0 ∧ ( 𝑀 Ramsey 𝐹 ) ≤ 𝐴 ) ) → ( ( 𝑀 Ramsey 𝐹 ) ∈ ℕ0 ∨ ( 𝑀 Ramsey 𝐹 ) ∈ { +∞ } ) )
20 19 ord ( ( ( 𝑀 ∈ ℕ0𝑅𝑉𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ( 𝐴 ∈ ℕ0 ∧ ( 𝑀 Ramsey 𝐹 ) ≤ 𝐴 ) ) → ( ¬ ( 𝑀 Ramsey 𝐹 ) ∈ ℕ0 → ( 𝑀 Ramsey 𝐹 ) ∈ { +∞ } ) )
21 15 20 mt3d ( ( ( 𝑀 ∈ ℕ0𝑅𝑉𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ( 𝐴 ∈ ℕ0 ∧ ( 𝑀 Ramsey 𝐹 ) ≤ 𝐴 ) ) → ( 𝑀 Ramsey 𝐹 ) ∈ ℕ0 )