| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ramlb.c | ⊢ 𝐶  =  ( 𝑎  ∈  V ,  𝑖  ∈  ℕ0  ↦  { 𝑏  ∈  𝒫  𝑎  ∣  ( ♯ ‘ 𝑏 )  =  𝑖 } ) | 
						
							| 2 |  | ramlb.m | ⊢ ( 𝜑  →  𝑀  ∈  ℕ0 ) | 
						
							| 3 |  | ramlb.r | ⊢ ( 𝜑  →  𝑅  ∈  𝑉 ) | 
						
							| 4 |  | ramlb.f | ⊢ ( 𝜑  →  𝐹 : 𝑅 ⟶ ℕ0 ) | 
						
							| 5 |  | ramlb.s | ⊢ ( 𝜑  →  𝑁  ∈  ℕ0 ) | 
						
							| 6 |  | ramlb.g | ⊢ ( 𝜑  →  𝐺 : ( ( 1 ... 𝑁 ) 𝐶 𝑀 ) ⟶ 𝑅 ) | 
						
							| 7 |  | ramlb.i | ⊢ ( ( 𝜑  ∧  ( 𝑐  ∈  𝑅  ∧  𝑥  ⊆  ( 1 ... 𝑁 ) ) )  →  ( ( 𝑥 𝐶 𝑀 )  ⊆  ( ◡ 𝐺  “  { 𝑐 } )  →  ( ♯ ‘ 𝑥 )  <  ( 𝐹 ‘ 𝑐 ) ) ) | 
						
							| 8 | 2 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑀  Ramsey  𝐹 )  ≤  𝑁 )  →  𝑀  ∈  ℕ0 ) | 
						
							| 9 | 3 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑀  Ramsey  𝐹 )  ≤  𝑁 )  →  𝑅  ∈  𝑉 ) | 
						
							| 10 | 4 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑀  Ramsey  𝐹 )  ≤  𝑁 )  →  𝐹 : 𝑅 ⟶ ℕ0 ) | 
						
							| 11 | 5 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑀  Ramsey  𝐹 )  ≤  𝑁 )  →  𝑁  ∈  ℕ0 ) | 
						
							| 12 |  | simpr | ⊢ ( ( 𝜑  ∧  ( 𝑀  Ramsey  𝐹 )  ≤  𝑁 )  →  ( 𝑀  Ramsey  𝐹 )  ≤  𝑁 ) | 
						
							| 13 |  | ramubcl | ⊢ ( ( ( 𝑀  ∈  ℕ0  ∧  𝑅  ∈  𝑉  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  ∧  ( 𝑁  ∈  ℕ0  ∧  ( 𝑀  Ramsey  𝐹 )  ≤  𝑁 ) )  →  ( 𝑀  Ramsey  𝐹 )  ∈  ℕ0 ) | 
						
							| 14 | 8 9 10 11 12 13 | syl32anc | ⊢ ( ( 𝜑  ∧  ( 𝑀  Ramsey  𝐹 )  ≤  𝑁 )  →  ( 𝑀  Ramsey  𝐹 )  ∈  ℕ0 ) | 
						
							| 15 |  | fzfid | ⊢ ( ( 𝜑  ∧  ( 𝑀  Ramsey  𝐹 )  ≤  𝑁 )  →  ( 1 ... 𝑁 )  ∈  Fin ) | 
						
							| 16 |  | hashfz1 | ⊢ ( 𝑁  ∈  ℕ0  →  ( ♯ ‘ ( 1 ... 𝑁 ) )  =  𝑁 ) | 
						
							| 17 | 5 16 | syl | ⊢ ( 𝜑  →  ( ♯ ‘ ( 1 ... 𝑁 ) )  =  𝑁 ) | 
						
							| 18 | 17 | breq2d | ⊢ ( 𝜑  →  ( ( 𝑀  Ramsey  𝐹 )  ≤  ( ♯ ‘ ( 1 ... 𝑁 ) )  ↔  ( 𝑀  Ramsey  𝐹 )  ≤  𝑁 ) ) | 
						
							| 19 | 18 | biimpar | ⊢ ( ( 𝜑  ∧  ( 𝑀  Ramsey  𝐹 )  ≤  𝑁 )  →  ( 𝑀  Ramsey  𝐹 )  ≤  ( ♯ ‘ ( 1 ... 𝑁 ) ) ) | 
						
							| 20 | 6 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑀  Ramsey  𝐹 )  ≤  𝑁 )  →  𝐺 : ( ( 1 ... 𝑁 ) 𝐶 𝑀 ) ⟶ 𝑅 ) | 
						
							| 21 | 1 8 9 10 14 15 19 20 | rami | ⊢ ( ( 𝜑  ∧  ( 𝑀  Ramsey  𝐹 )  ≤  𝑁 )  →  ∃ 𝑐  ∈  𝑅 ∃ 𝑥  ∈  𝒫  ( 1 ... 𝑁 ) ( ( 𝐹 ‘ 𝑐 )  ≤  ( ♯ ‘ 𝑥 )  ∧  ( 𝑥 𝐶 𝑀 )  ⊆  ( ◡ 𝐺  “  { 𝑐 } ) ) ) | 
						
							| 22 |  | elpwi | ⊢ ( 𝑥  ∈  𝒫  ( 1 ... 𝑁 )  →  𝑥  ⊆  ( 1 ... 𝑁 ) ) | 
						
							| 23 | 7 | adantlr | ⊢ ( ( ( 𝜑  ∧  ( 𝑀  Ramsey  𝐹 )  ≤  𝑁 )  ∧  ( 𝑐  ∈  𝑅  ∧  𝑥  ⊆  ( 1 ... 𝑁 ) ) )  →  ( ( 𝑥 𝐶 𝑀 )  ⊆  ( ◡ 𝐺  “  { 𝑐 } )  →  ( ♯ ‘ 𝑥 )  <  ( 𝐹 ‘ 𝑐 ) ) ) | 
						
							| 24 |  | fzfid | ⊢ ( ( ( 𝜑  ∧  ( 𝑀  Ramsey  𝐹 )  ≤  𝑁 )  ∧  ( 𝑐  ∈  𝑅  ∧  𝑥  ⊆  ( 1 ... 𝑁 ) ) )  →  ( 1 ... 𝑁 )  ∈  Fin ) | 
						
							| 25 |  | simprr | ⊢ ( ( ( 𝜑  ∧  ( 𝑀  Ramsey  𝐹 )  ≤  𝑁 )  ∧  ( 𝑐  ∈  𝑅  ∧  𝑥  ⊆  ( 1 ... 𝑁 ) ) )  →  𝑥  ⊆  ( 1 ... 𝑁 ) ) | 
						
							| 26 | 24 25 | ssfid | ⊢ ( ( ( 𝜑  ∧  ( 𝑀  Ramsey  𝐹 )  ≤  𝑁 )  ∧  ( 𝑐  ∈  𝑅  ∧  𝑥  ⊆  ( 1 ... 𝑁 ) ) )  →  𝑥  ∈  Fin ) | 
						
							| 27 |  | hashcl | ⊢ ( 𝑥  ∈  Fin  →  ( ♯ ‘ 𝑥 )  ∈  ℕ0 ) | 
						
							| 28 | 26 27 | syl | ⊢ ( ( ( 𝜑  ∧  ( 𝑀  Ramsey  𝐹 )  ≤  𝑁 )  ∧  ( 𝑐  ∈  𝑅  ∧  𝑥  ⊆  ( 1 ... 𝑁 ) ) )  →  ( ♯ ‘ 𝑥 )  ∈  ℕ0 ) | 
						
							| 29 | 28 | nn0red | ⊢ ( ( ( 𝜑  ∧  ( 𝑀  Ramsey  𝐹 )  ≤  𝑁 )  ∧  ( 𝑐  ∈  𝑅  ∧  𝑥  ⊆  ( 1 ... 𝑁 ) ) )  →  ( ♯ ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 30 |  | simpl | ⊢ ( ( 𝑐  ∈  𝑅  ∧  𝑥  ⊆  ( 1 ... 𝑁 ) )  →  𝑐  ∈  𝑅 ) | 
						
							| 31 |  | ffvelcdm | ⊢ ( ( 𝐹 : 𝑅 ⟶ ℕ0  ∧  𝑐  ∈  𝑅 )  →  ( 𝐹 ‘ 𝑐 )  ∈  ℕ0 ) | 
						
							| 32 | 10 30 31 | syl2an | ⊢ ( ( ( 𝜑  ∧  ( 𝑀  Ramsey  𝐹 )  ≤  𝑁 )  ∧  ( 𝑐  ∈  𝑅  ∧  𝑥  ⊆  ( 1 ... 𝑁 ) ) )  →  ( 𝐹 ‘ 𝑐 )  ∈  ℕ0 ) | 
						
							| 33 | 32 | nn0red | ⊢ ( ( ( 𝜑  ∧  ( 𝑀  Ramsey  𝐹 )  ≤  𝑁 )  ∧  ( 𝑐  ∈  𝑅  ∧  𝑥  ⊆  ( 1 ... 𝑁 ) ) )  →  ( 𝐹 ‘ 𝑐 )  ∈  ℝ ) | 
						
							| 34 | 29 33 | ltnled | ⊢ ( ( ( 𝜑  ∧  ( 𝑀  Ramsey  𝐹 )  ≤  𝑁 )  ∧  ( 𝑐  ∈  𝑅  ∧  𝑥  ⊆  ( 1 ... 𝑁 ) ) )  →  ( ( ♯ ‘ 𝑥 )  <  ( 𝐹 ‘ 𝑐 )  ↔  ¬  ( 𝐹 ‘ 𝑐 )  ≤  ( ♯ ‘ 𝑥 ) ) ) | 
						
							| 35 | 23 34 | sylibd | ⊢ ( ( ( 𝜑  ∧  ( 𝑀  Ramsey  𝐹 )  ≤  𝑁 )  ∧  ( 𝑐  ∈  𝑅  ∧  𝑥  ⊆  ( 1 ... 𝑁 ) ) )  →  ( ( 𝑥 𝐶 𝑀 )  ⊆  ( ◡ 𝐺  “  { 𝑐 } )  →  ¬  ( 𝐹 ‘ 𝑐 )  ≤  ( ♯ ‘ 𝑥 ) ) ) | 
						
							| 36 | 22 35 | sylanr2 | ⊢ ( ( ( 𝜑  ∧  ( 𝑀  Ramsey  𝐹 )  ≤  𝑁 )  ∧  ( 𝑐  ∈  𝑅  ∧  𝑥  ∈  𝒫  ( 1 ... 𝑁 ) ) )  →  ( ( 𝑥 𝐶 𝑀 )  ⊆  ( ◡ 𝐺  “  { 𝑐 } )  →  ¬  ( 𝐹 ‘ 𝑐 )  ≤  ( ♯ ‘ 𝑥 ) ) ) | 
						
							| 37 | 36 | con2d | ⊢ ( ( ( 𝜑  ∧  ( 𝑀  Ramsey  𝐹 )  ≤  𝑁 )  ∧  ( 𝑐  ∈  𝑅  ∧  𝑥  ∈  𝒫  ( 1 ... 𝑁 ) ) )  →  ( ( 𝐹 ‘ 𝑐 )  ≤  ( ♯ ‘ 𝑥 )  →  ¬  ( 𝑥 𝐶 𝑀 )  ⊆  ( ◡ 𝐺  “  { 𝑐 } ) ) ) | 
						
							| 38 |  | imnan | ⊢ ( ( ( 𝐹 ‘ 𝑐 )  ≤  ( ♯ ‘ 𝑥 )  →  ¬  ( 𝑥 𝐶 𝑀 )  ⊆  ( ◡ 𝐺  “  { 𝑐 } ) )  ↔  ¬  ( ( 𝐹 ‘ 𝑐 )  ≤  ( ♯ ‘ 𝑥 )  ∧  ( 𝑥 𝐶 𝑀 )  ⊆  ( ◡ 𝐺  “  { 𝑐 } ) ) ) | 
						
							| 39 | 37 38 | sylib | ⊢ ( ( ( 𝜑  ∧  ( 𝑀  Ramsey  𝐹 )  ≤  𝑁 )  ∧  ( 𝑐  ∈  𝑅  ∧  𝑥  ∈  𝒫  ( 1 ... 𝑁 ) ) )  →  ¬  ( ( 𝐹 ‘ 𝑐 )  ≤  ( ♯ ‘ 𝑥 )  ∧  ( 𝑥 𝐶 𝑀 )  ⊆  ( ◡ 𝐺  “  { 𝑐 } ) ) ) | 
						
							| 40 | 39 | pm2.21d | ⊢ ( ( ( 𝜑  ∧  ( 𝑀  Ramsey  𝐹 )  ≤  𝑁 )  ∧  ( 𝑐  ∈  𝑅  ∧  𝑥  ∈  𝒫  ( 1 ... 𝑁 ) ) )  →  ( ( ( 𝐹 ‘ 𝑐 )  ≤  ( ♯ ‘ 𝑥 )  ∧  ( 𝑥 𝐶 𝑀 )  ⊆  ( ◡ 𝐺  “  { 𝑐 } ) )  →  ¬  ( 𝑀  Ramsey  𝐹 )  ≤  𝑁 ) ) | 
						
							| 41 | 40 | rexlimdvva | ⊢ ( ( 𝜑  ∧  ( 𝑀  Ramsey  𝐹 )  ≤  𝑁 )  →  ( ∃ 𝑐  ∈  𝑅 ∃ 𝑥  ∈  𝒫  ( 1 ... 𝑁 ) ( ( 𝐹 ‘ 𝑐 )  ≤  ( ♯ ‘ 𝑥 )  ∧  ( 𝑥 𝐶 𝑀 )  ⊆  ( ◡ 𝐺  “  { 𝑐 } ) )  →  ¬  ( 𝑀  Ramsey  𝐹 )  ≤  𝑁 ) ) | 
						
							| 42 | 21 41 | mpd | ⊢ ( ( 𝜑  ∧  ( 𝑀  Ramsey  𝐹 )  ≤  𝑁 )  →  ¬  ( 𝑀  Ramsey  𝐹 )  ≤  𝑁 ) | 
						
							| 43 | 42 | pm2.01da | ⊢ ( 𝜑  →  ¬  ( 𝑀  Ramsey  𝐹 )  ≤  𝑁 ) | 
						
							| 44 | 5 | nn0red | ⊢ ( 𝜑  →  𝑁  ∈  ℝ ) | 
						
							| 45 | 44 | rexrd | ⊢ ( 𝜑  →  𝑁  ∈  ℝ* ) | 
						
							| 46 |  | ramxrcl | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑅  ∈  𝑉  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  →  ( 𝑀  Ramsey  𝐹 )  ∈  ℝ* ) | 
						
							| 47 | 2 3 4 46 | syl3anc | ⊢ ( 𝜑  →  ( 𝑀  Ramsey  𝐹 )  ∈  ℝ* ) | 
						
							| 48 |  | xrltnle | ⊢ ( ( 𝑁  ∈  ℝ*  ∧  ( 𝑀  Ramsey  𝐹 )  ∈  ℝ* )  →  ( 𝑁  <  ( 𝑀  Ramsey  𝐹 )  ↔  ¬  ( 𝑀  Ramsey  𝐹 )  ≤  𝑁 ) ) | 
						
							| 49 | 45 47 48 | syl2anc | ⊢ ( 𝜑  →  ( 𝑁  <  ( 𝑀  Ramsey  𝐹 )  ↔  ¬  ( 𝑀  Ramsey  𝐹 )  ≤  𝑁 ) ) | 
						
							| 50 | 43 49 | mpbird | ⊢ ( 𝜑  →  𝑁  <  ( 𝑀  Ramsey  𝐹 ) ) |