| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
⊢ ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) = ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) |
| 2 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
| 3 |
2
|
a1i |
⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) → 0 ∈ ℕ0 ) |
| 4 |
|
simpl1 |
⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) → 𝑅 ∈ 𝑉 ) |
| 5 |
|
simpl3 |
⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) → 𝐹 : 𝑅 ⟶ ℕ0 ) |
| 6 |
5
|
frnd |
⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) → ran 𝐹 ⊆ ℕ0 ) |
| 7 |
|
nn0ssz |
⊢ ℕ0 ⊆ ℤ |
| 8 |
6 7
|
sstrdi |
⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) → ran 𝐹 ⊆ ℤ ) |
| 9 |
5
|
fdmd |
⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) → dom 𝐹 = 𝑅 ) |
| 10 |
|
simpl2 |
⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) → 𝑅 ≠ ∅ ) |
| 11 |
9 10
|
eqnetrd |
⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) → dom 𝐹 ≠ ∅ ) |
| 12 |
|
dm0rn0 |
⊢ ( dom 𝐹 = ∅ ↔ ran 𝐹 = ∅ ) |
| 13 |
12
|
necon3bii |
⊢ ( dom 𝐹 ≠ ∅ ↔ ran 𝐹 ≠ ∅ ) |
| 14 |
11 13
|
sylib |
⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) → ran 𝐹 ≠ ∅ ) |
| 15 |
|
simpr |
⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) → ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) |
| 16 |
|
suprzcl2 |
⊢ ( ( ran 𝐹 ⊆ ℤ ∧ ran 𝐹 ≠ ∅ ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) → sup ( ran 𝐹 , ℝ , < ) ∈ ran 𝐹 ) |
| 17 |
8 14 15 16
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) → sup ( ran 𝐹 , ℝ , < ) ∈ ran 𝐹 ) |
| 18 |
6 17
|
sseldd |
⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) → sup ( ran 𝐹 , ℝ , < ) ∈ ℕ0 ) |
| 19 |
1
|
hashbc0 |
⊢ ( 𝑠 ∈ V → ( 𝑠 ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 0 ) = { ∅ } ) |
| 20 |
19
|
elv |
⊢ ( 𝑠 ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 0 ) = { ∅ } |
| 21 |
20
|
feq2i |
⊢ ( 𝑓 : ( 𝑠 ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 0 ) ⟶ 𝑅 ↔ 𝑓 : { ∅ } ⟶ 𝑅 ) |
| 22 |
21
|
biimpi |
⊢ ( 𝑓 : ( 𝑠 ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 0 ) ⟶ 𝑅 → 𝑓 : { ∅ } ⟶ 𝑅 ) |
| 23 |
|
simprr |
⊢ ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) ∧ ( sup ( ran 𝐹 , ℝ , < ) ≤ ( ♯ ‘ 𝑠 ) ∧ 𝑓 : { ∅ } ⟶ 𝑅 ) ) → 𝑓 : { ∅ } ⟶ 𝑅 ) |
| 24 |
|
0ex |
⊢ ∅ ∈ V |
| 25 |
24
|
snid |
⊢ ∅ ∈ { ∅ } |
| 26 |
|
ffvelcdm |
⊢ ( ( 𝑓 : { ∅ } ⟶ 𝑅 ∧ ∅ ∈ { ∅ } ) → ( 𝑓 ‘ ∅ ) ∈ 𝑅 ) |
| 27 |
23 25 26
|
sylancl |
⊢ ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) ∧ ( sup ( ran 𝐹 , ℝ , < ) ≤ ( ♯ ‘ 𝑠 ) ∧ 𝑓 : { ∅ } ⟶ 𝑅 ) ) → ( 𝑓 ‘ ∅ ) ∈ 𝑅 ) |
| 28 |
|
vex |
⊢ 𝑠 ∈ V |
| 29 |
28
|
pwid |
⊢ 𝑠 ∈ 𝒫 𝑠 |
| 30 |
29
|
a1i |
⊢ ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) ∧ ( sup ( ran 𝐹 , ℝ , < ) ≤ ( ♯ ‘ 𝑠 ) ∧ 𝑓 : { ∅ } ⟶ 𝑅 ) ) → 𝑠 ∈ 𝒫 𝑠 ) |
| 31 |
5
|
adantr |
⊢ ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) ∧ ( sup ( ran 𝐹 , ℝ , < ) ≤ ( ♯ ‘ 𝑠 ) ∧ 𝑓 : { ∅ } ⟶ 𝑅 ) ) → 𝐹 : 𝑅 ⟶ ℕ0 ) |
| 32 |
31 27
|
ffvelcdmd |
⊢ ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) ∧ ( sup ( ran 𝐹 , ℝ , < ) ≤ ( ♯ ‘ 𝑠 ) ∧ 𝑓 : { ∅ } ⟶ 𝑅 ) ) → ( 𝐹 ‘ ( 𝑓 ‘ ∅ ) ) ∈ ℕ0 ) |
| 33 |
32
|
nn0red |
⊢ ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) ∧ ( sup ( ran 𝐹 , ℝ , < ) ≤ ( ♯ ‘ 𝑠 ) ∧ 𝑓 : { ∅ } ⟶ 𝑅 ) ) → ( 𝐹 ‘ ( 𝑓 ‘ ∅ ) ) ∈ ℝ ) |
| 34 |
33
|
rexrd |
⊢ ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) ∧ ( sup ( ran 𝐹 , ℝ , < ) ≤ ( ♯ ‘ 𝑠 ) ∧ 𝑓 : { ∅ } ⟶ 𝑅 ) ) → ( 𝐹 ‘ ( 𝑓 ‘ ∅ ) ) ∈ ℝ* ) |
| 35 |
18
|
nn0red |
⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) → sup ( ran 𝐹 , ℝ , < ) ∈ ℝ ) |
| 36 |
35
|
rexrd |
⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) → sup ( ran 𝐹 , ℝ , < ) ∈ ℝ* ) |
| 37 |
36
|
adantr |
⊢ ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) ∧ ( sup ( ran 𝐹 , ℝ , < ) ≤ ( ♯ ‘ 𝑠 ) ∧ 𝑓 : { ∅ } ⟶ 𝑅 ) ) → sup ( ran 𝐹 , ℝ , < ) ∈ ℝ* ) |
| 38 |
|
hashxrcl |
⊢ ( 𝑠 ∈ V → ( ♯ ‘ 𝑠 ) ∈ ℝ* ) |
| 39 |
28 38
|
mp1i |
⊢ ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) ∧ ( sup ( ran 𝐹 , ℝ , < ) ≤ ( ♯ ‘ 𝑠 ) ∧ 𝑓 : { ∅ } ⟶ 𝑅 ) ) → ( ♯ ‘ 𝑠 ) ∈ ℝ* ) |
| 40 |
8
|
adantr |
⊢ ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) ∧ ( sup ( ran 𝐹 , ℝ , < ) ≤ ( ♯ ‘ 𝑠 ) ∧ 𝑓 : { ∅ } ⟶ 𝑅 ) ) → ran 𝐹 ⊆ ℤ ) |
| 41 |
15
|
adantr |
⊢ ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) ∧ ( sup ( ran 𝐹 , ℝ , < ) ≤ ( ♯ ‘ 𝑠 ) ∧ 𝑓 : { ∅ } ⟶ 𝑅 ) ) → ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) |
| 42 |
31
|
ffnd |
⊢ ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) ∧ ( sup ( ran 𝐹 , ℝ , < ) ≤ ( ♯ ‘ 𝑠 ) ∧ 𝑓 : { ∅ } ⟶ 𝑅 ) ) → 𝐹 Fn 𝑅 ) |
| 43 |
|
fnfvelrn |
⊢ ( ( 𝐹 Fn 𝑅 ∧ ( 𝑓 ‘ ∅ ) ∈ 𝑅 ) → ( 𝐹 ‘ ( 𝑓 ‘ ∅ ) ) ∈ ran 𝐹 ) |
| 44 |
42 27 43
|
syl2anc |
⊢ ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) ∧ ( sup ( ran 𝐹 , ℝ , < ) ≤ ( ♯ ‘ 𝑠 ) ∧ 𝑓 : { ∅ } ⟶ 𝑅 ) ) → ( 𝐹 ‘ ( 𝑓 ‘ ∅ ) ) ∈ ran 𝐹 ) |
| 45 |
|
suprzub |
⊢ ( ( ran 𝐹 ⊆ ℤ ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ∧ ( 𝐹 ‘ ( 𝑓 ‘ ∅ ) ) ∈ ran 𝐹 ) → ( 𝐹 ‘ ( 𝑓 ‘ ∅ ) ) ≤ sup ( ran 𝐹 , ℝ , < ) ) |
| 46 |
40 41 44 45
|
syl3anc |
⊢ ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) ∧ ( sup ( ran 𝐹 , ℝ , < ) ≤ ( ♯ ‘ 𝑠 ) ∧ 𝑓 : { ∅ } ⟶ 𝑅 ) ) → ( 𝐹 ‘ ( 𝑓 ‘ ∅ ) ) ≤ sup ( ran 𝐹 , ℝ , < ) ) |
| 47 |
|
simprl |
⊢ ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) ∧ ( sup ( ran 𝐹 , ℝ , < ) ≤ ( ♯ ‘ 𝑠 ) ∧ 𝑓 : { ∅ } ⟶ 𝑅 ) ) → sup ( ran 𝐹 , ℝ , < ) ≤ ( ♯ ‘ 𝑠 ) ) |
| 48 |
34 37 39 46 47
|
xrletrd |
⊢ ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) ∧ ( sup ( ran 𝐹 , ℝ , < ) ≤ ( ♯ ‘ 𝑠 ) ∧ 𝑓 : { ∅ } ⟶ 𝑅 ) ) → ( 𝐹 ‘ ( 𝑓 ‘ ∅ ) ) ≤ ( ♯ ‘ 𝑠 ) ) |
| 49 |
25
|
a1i |
⊢ ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) ∧ ( sup ( ran 𝐹 , ℝ , < ) ≤ ( ♯ ‘ 𝑠 ) ∧ 𝑓 : { ∅ } ⟶ 𝑅 ) ) → ∅ ∈ { ∅ } ) |
| 50 |
|
fvex |
⊢ ( 𝑓 ‘ ∅ ) ∈ V |
| 51 |
50
|
snid |
⊢ ( 𝑓 ‘ ∅ ) ∈ { ( 𝑓 ‘ ∅ ) } |
| 52 |
51
|
a1i |
⊢ ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) ∧ ( sup ( ran 𝐹 , ℝ , < ) ≤ ( ♯ ‘ 𝑠 ) ∧ 𝑓 : { ∅ } ⟶ 𝑅 ) ) → ( 𝑓 ‘ ∅ ) ∈ { ( 𝑓 ‘ ∅ ) } ) |
| 53 |
|
ffn |
⊢ ( 𝑓 : { ∅ } ⟶ 𝑅 → 𝑓 Fn { ∅ } ) |
| 54 |
|
elpreima |
⊢ ( 𝑓 Fn { ∅ } → ( ∅ ∈ ( ◡ 𝑓 “ { ( 𝑓 ‘ ∅ ) } ) ↔ ( ∅ ∈ { ∅ } ∧ ( 𝑓 ‘ ∅ ) ∈ { ( 𝑓 ‘ ∅ ) } ) ) ) |
| 55 |
23 53 54
|
3syl |
⊢ ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) ∧ ( sup ( ran 𝐹 , ℝ , < ) ≤ ( ♯ ‘ 𝑠 ) ∧ 𝑓 : { ∅ } ⟶ 𝑅 ) ) → ( ∅ ∈ ( ◡ 𝑓 “ { ( 𝑓 ‘ ∅ ) } ) ↔ ( ∅ ∈ { ∅ } ∧ ( 𝑓 ‘ ∅ ) ∈ { ( 𝑓 ‘ ∅ ) } ) ) ) |
| 56 |
49 52 55
|
mpbir2and |
⊢ ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) ∧ ( sup ( ran 𝐹 , ℝ , < ) ≤ ( ♯ ‘ 𝑠 ) ∧ 𝑓 : { ∅ } ⟶ 𝑅 ) ) → ∅ ∈ ( ◡ 𝑓 “ { ( 𝑓 ‘ ∅ ) } ) ) |
| 57 |
|
fveq2 |
⊢ ( 𝑐 = ( 𝑓 ‘ ∅ ) → ( 𝐹 ‘ 𝑐 ) = ( 𝐹 ‘ ( 𝑓 ‘ ∅ ) ) ) |
| 58 |
57
|
breq1d |
⊢ ( 𝑐 = ( 𝑓 ‘ ∅ ) → ( ( 𝐹 ‘ 𝑐 ) ≤ ( ♯ ‘ 𝑧 ) ↔ ( 𝐹 ‘ ( 𝑓 ‘ ∅ ) ) ≤ ( ♯ ‘ 𝑧 ) ) ) |
| 59 |
1
|
hashbc0 |
⊢ ( 𝑧 ∈ V → ( 𝑧 ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 0 ) = { ∅ } ) |
| 60 |
59
|
elv |
⊢ ( 𝑧 ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 0 ) = { ∅ } |
| 61 |
60
|
sseq1i |
⊢ ( ( 𝑧 ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 0 ) ⊆ ( ◡ 𝑓 “ { 𝑐 } ) ↔ { ∅ } ⊆ ( ◡ 𝑓 “ { 𝑐 } ) ) |
| 62 |
24
|
snss |
⊢ ( ∅ ∈ ( ◡ 𝑓 “ { 𝑐 } ) ↔ { ∅ } ⊆ ( ◡ 𝑓 “ { 𝑐 } ) ) |
| 63 |
61 62
|
bitr4i |
⊢ ( ( 𝑧 ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 0 ) ⊆ ( ◡ 𝑓 “ { 𝑐 } ) ↔ ∅ ∈ ( ◡ 𝑓 “ { 𝑐 } ) ) |
| 64 |
|
sneq |
⊢ ( 𝑐 = ( 𝑓 ‘ ∅ ) → { 𝑐 } = { ( 𝑓 ‘ ∅ ) } ) |
| 65 |
64
|
imaeq2d |
⊢ ( 𝑐 = ( 𝑓 ‘ ∅ ) → ( ◡ 𝑓 “ { 𝑐 } ) = ( ◡ 𝑓 “ { ( 𝑓 ‘ ∅ ) } ) ) |
| 66 |
65
|
eleq2d |
⊢ ( 𝑐 = ( 𝑓 ‘ ∅ ) → ( ∅ ∈ ( ◡ 𝑓 “ { 𝑐 } ) ↔ ∅ ∈ ( ◡ 𝑓 “ { ( 𝑓 ‘ ∅ ) } ) ) ) |
| 67 |
63 66
|
bitrid |
⊢ ( 𝑐 = ( 𝑓 ‘ ∅ ) → ( ( 𝑧 ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 0 ) ⊆ ( ◡ 𝑓 “ { 𝑐 } ) ↔ ∅ ∈ ( ◡ 𝑓 “ { ( 𝑓 ‘ ∅ ) } ) ) ) |
| 68 |
58 67
|
anbi12d |
⊢ ( 𝑐 = ( 𝑓 ‘ ∅ ) → ( ( ( 𝐹 ‘ 𝑐 ) ≤ ( ♯ ‘ 𝑧 ) ∧ ( 𝑧 ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 0 ) ⊆ ( ◡ 𝑓 “ { 𝑐 } ) ) ↔ ( ( 𝐹 ‘ ( 𝑓 ‘ ∅ ) ) ≤ ( ♯ ‘ 𝑧 ) ∧ ∅ ∈ ( ◡ 𝑓 “ { ( 𝑓 ‘ ∅ ) } ) ) ) ) |
| 69 |
|
fveq2 |
⊢ ( 𝑧 = 𝑠 → ( ♯ ‘ 𝑧 ) = ( ♯ ‘ 𝑠 ) ) |
| 70 |
69
|
breq2d |
⊢ ( 𝑧 = 𝑠 → ( ( 𝐹 ‘ ( 𝑓 ‘ ∅ ) ) ≤ ( ♯ ‘ 𝑧 ) ↔ ( 𝐹 ‘ ( 𝑓 ‘ ∅ ) ) ≤ ( ♯ ‘ 𝑠 ) ) ) |
| 71 |
70
|
anbi1d |
⊢ ( 𝑧 = 𝑠 → ( ( ( 𝐹 ‘ ( 𝑓 ‘ ∅ ) ) ≤ ( ♯ ‘ 𝑧 ) ∧ ∅ ∈ ( ◡ 𝑓 “ { ( 𝑓 ‘ ∅ ) } ) ) ↔ ( ( 𝐹 ‘ ( 𝑓 ‘ ∅ ) ) ≤ ( ♯ ‘ 𝑠 ) ∧ ∅ ∈ ( ◡ 𝑓 “ { ( 𝑓 ‘ ∅ ) } ) ) ) ) |
| 72 |
68 71
|
rspc2ev |
⊢ ( ( ( 𝑓 ‘ ∅ ) ∈ 𝑅 ∧ 𝑠 ∈ 𝒫 𝑠 ∧ ( ( 𝐹 ‘ ( 𝑓 ‘ ∅ ) ) ≤ ( ♯ ‘ 𝑠 ) ∧ ∅ ∈ ( ◡ 𝑓 “ { ( 𝑓 ‘ ∅ ) } ) ) ) → ∃ 𝑐 ∈ 𝑅 ∃ 𝑧 ∈ 𝒫 𝑠 ( ( 𝐹 ‘ 𝑐 ) ≤ ( ♯ ‘ 𝑧 ) ∧ ( 𝑧 ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 0 ) ⊆ ( ◡ 𝑓 “ { 𝑐 } ) ) ) |
| 73 |
27 30 48 56 72
|
syl112anc |
⊢ ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) ∧ ( sup ( ran 𝐹 , ℝ , < ) ≤ ( ♯ ‘ 𝑠 ) ∧ 𝑓 : { ∅ } ⟶ 𝑅 ) ) → ∃ 𝑐 ∈ 𝑅 ∃ 𝑧 ∈ 𝒫 𝑠 ( ( 𝐹 ‘ 𝑐 ) ≤ ( ♯ ‘ 𝑧 ) ∧ ( 𝑧 ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 0 ) ⊆ ( ◡ 𝑓 “ { 𝑐 } ) ) ) |
| 74 |
22 73
|
sylanr2 |
⊢ ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) ∧ ( sup ( ran 𝐹 , ℝ , < ) ≤ ( ♯ ‘ 𝑠 ) ∧ 𝑓 : ( 𝑠 ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 0 ) ⟶ 𝑅 ) ) → ∃ 𝑐 ∈ 𝑅 ∃ 𝑧 ∈ 𝒫 𝑠 ( ( 𝐹 ‘ 𝑐 ) ≤ ( ♯ ‘ 𝑧 ) ∧ ( 𝑧 ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 0 ) ⊆ ( ◡ 𝑓 “ { 𝑐 } ) ) ) |
| 75 |
1 3 4 5 18 74
|
ramub |
⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) → ( 0 Ramsey 𝐹 ) ≤ sup ( ran 𝐹 , ℝ , < ) ) |
| 76 |
|
ffn |
⊢ ( 𝐹 : 𝑅 ⟶ ℕ0 → 𝐹 Fn 𝑅 ) |
| 77 |
|
fvelrnb |
⊢ ( 𝐹 Fn 𝑅 → ( sup ( ran 𝐹 , ℝ , < ) ∈ ran 𝐹 ↔ ∃ 𝑐 ∈ 𝑅 ( 𝐹 ‘ 𝑐 ) = sup ( ran 𝐹 , ℝ , < ) ) ) |
| 78 |
5 76 77
|
3syl |
⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) → ( sup ( ran 𝐹 , ℝ , < ) ∈ ran 𝐹 ↔ ∃ 𝑐 ∈ 𝑅 ( 𝐹 ‘ 𝑐 ) = sup ( ran 𝐹 , ℝ , < ) ) ) |
| 79 |
17 78
|
mpbid |
⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) → ∃ 𝑐 ∈ 𝑅 ( 𝐹 ‘ 𝑐 ) = sup ( ran 𝐹 , ℝ , < ) ) |
| 80 |
2
|
a1i |
⊢ ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) ∧ ( 𝑐 ∈ 𝑅 ∧ ( 𝐹 ‘ 𝑐 ) ∈ ℕ ) ) → 0 ∈ ℕ0 ) |
| 81 |
|
simpll1 |
⊢ ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) ∧ ( 𝑐 ∈ 𝑅 ∧ ( 𝐹 ‘ 𝑐 ) ∈ ℕ ) ) → 𝑅 ∈ 𝑉 ) |
| 82 |
|
simpll3 |
⊢ ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) ∧ ( 𝑐 ∈ 𝑅 ∧ ( 𝐹 ‘ 𝑐 ) ∈ ℕ ) ) → 𝐹 : 𝑅 ⟶ ℕ0 ) |
| 83 |
|
nnm1nn0 |
⊢ ( ( 𝐹 ‘ 𝑐 ) ∈ ℕ → ( ( 𝐹 ‘ 𝑐 ) − 1 ) ∈ ℕ0 ) |
| 84 |
83
|
ad2antll |
⊢ ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) ∧ ( 𝑐 ∈ 𝑅 ∧ ( 𝐹 ‘ 𝑐 ) ∈ ℕ ) ) → ( ( 𝐹 ‘ 𝑐 ) − 1 ) ∈ ℕ0 ) |
| 85 |
|
vex |
⊢ 𝑐 ∈ V |
| 86 |
24 85
|
f1osn |
⊢ { 〈 ∅ , 𝑐 〉 } : { ∅ } –1-1-onto→ { 𝑐 } |
| 87 |
|
f1of |
⊢ ( { 〈 ∅ , 𝑐 〉 } : { ∅ } –1-1-onto→ { 𝑐 } → { 〈 ∅ , 𝑐 〉 } : { ∅ } ⟶ { 𝑐 } ) |
| 88 |
86 87
|
ax-mp |
⊢ { 〈 ∅ , 𝑐 〉 } : { ∅ } ⟶ { 𝑐 } |
| 89 |
|
simprl |
⊢ ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) ∧ ( 𝑐 ∈ 𝑅 ∧ ( 𝐹 ‘ 𝑐 ) ∈ ℕ ) ) → 𝑐 ∈ 𝑅 ) |
| 90 |
89
|
snssd |
⊢ ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) ∧ ( 𝑐 ∈ 𝑅 ∧ ( 𝐹 ‘ 𝑐 ) ∈ ℕ ) ) → { 𝑐 } ⊆ 𝑅 ) |
| 91 |
|
fss |
⊢ ( ( { 〈 ∅ , 𝑐 〉 } : { ∅ } ⟶ { 𝑐 } ∧ { 𝑐 } ⊆ 𝑅 ) → { 〈 ∅ , 𝑐 〉 } : { ∅ } ⟶ 𝑅 ) |
| 92 |
88 90 91
|
sylancr |
⊢ ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) ∧ ( 𝑐 ∈ 𝑅 ∧ ( 𝐹 ‘ 𝑐 ) ∈ ℕ ) ) → { 〈 ∅ , 𝑐 〉 } : { ∅ } ⟶ 𝑅 ) |
| 93 |
|
ovex |
⊢ ( 1 ... ( ( 𝐹 ‘ 𝑐 ) − 1 ) ) ∈ V |
| 94 |
1
|
hashbc0 |
⊢ ( ( 1 ... ( ( 𝐹 ‘ 𝑐 ) − 1 ) ) ∈ V → ( ( 1 ... ( ( 𝐹 ‘ 𝑐 ) − 1 ) ) ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 0 ) = { ∅ } ) |
| 95 |
93 94
|
ax-mp |
⊢ ( ( 1 ... ( ( 𝐹 ‘ 𝑐 ) − 1 ) ) ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 0 ) = { ∅ } |
| 96 |
95
|
feq2i |
⊢ ( { 〈 ∅ , 𝑐 〉 } : ( ( 1 ... ( ( 𝐹 ‘ 𝑐 ) − 1 ) ) ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 0 ) ⟶ 𝑅 ↔ { 〈 ∅ , 𝑐 〉 } : { ∅ } ⟶ 𝑅 ) |
| 97 |
92 96
|
sylibr |
⊢ ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) ∧ ( 𝑐 ∈ 𝑅 ∧ ( 𝐹 ‘ 𝑐 ) ∈ ℕ ) ) → { 〈 ∅ , 𝑐 〉 } : ( ( 1 ... ( ( 𝐹 ‘ 𝑐 ) − 1 ) ) ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 0 ) ⟶ 𝑅 ) |
| 98 |
60
|
sseq1i |
⊢ ( ( 𝑧 ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 0 ) ⊆ ( ◡ { 〈 ∅ , 𝑐 〉 } “ { 𝑑 } ) ↔ { ∅ } ⊆ ( ◡ { 〈 ∅ , 𝑐 〉 } “ { 𝑑 } ) ) |
| 99 |
24
|
snss |
⊢ ( ∅ ∈ ( ◡ { 〈 ∅ , 𝑐 〉 } “ { 𝑑 } ) ↔ { ∅ } ⊆ ( ◡ { 〈 ∅ , 𝑐 〉 } “ { 𝑑 } ) ) |
| 100 |
98 99
|
bitr4i |
⊢ ( ( 𝑧 ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 0 ) ⊆ ( ◡ { 〈 ∅ , 𝑐 〉 } “ { 𝑑 } ) ↔ ∅ ∈ ( ◡ { 〈 ∅ , 𝑐 〉 } “ { 𝑑 } ) ) |
| 101 |
|
fzfid |
⊢ ( ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) ∧ ( 𝑐 ∈ 𝑅 ∧ ( 𝐹 ‘ 𝑐 ) ∈ ℕ ) ) ∧ ( 𝑑 ∈ 𝑅 ∧ 𝑧 ⊆ ( 1 ... ( ( 𝐹 ‘ 𝑐 ) − 1 ) ) ) ) → ( 1 ... ( ( 𝐹 ‘ 𝑐 ) − 1 ) ) ∈ Fin ) |
| 102 |
|
simprr |
⊢ ( ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) ∧ ( 𝑐 ∈ 𝑅 ∧ ( 𝐹 ‘ 𝑐 ) ∈ ℕ ) ) ∧ ( 𝑑 ∈ 𝑅 ∧ 𝑧 ⊆ ( 1 ... ( ( 𝐹 ‘ 𝑐 ) − 1 ) ) ) ) → 𝑧 ⊆ ( 1 ... ( ( 𝐹 ‘ 𝑐 ) − 1 ) ) ) |
| 103 |
|
ssdomg |
⊢ ( ( 1 ... ( ( 𝐹 ‘ 𝑐 ) − 1 ) ) ∈ Fin → ( 𝑧 ⊆ ( 1 ... ( ( 𝐹 ‘ 𝑐 ) − 1 ) ) → 𝑧 ≼ ( 1 ... ( ( 𝐹 ‘ 𝑐 ) − 1 ) ) ) ) |
| 104 |
101 102 103
|
sylc |
⊢ ( ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) ∧ ( 𝑐 ∈ 𝑅 ∧ ( 𝐹 ‘ 𝑐 ) ∈ ℕ ) ) ∧ ( 𝑑 ∈ 𝑅 ∧ 𝑧 ⊆ ( 1 ... ( ( 𝐹 ‘ 𝑐 ) − 1 ) ) ) ) → 𝑧 ≼ ( 1 ... ( ( 𝐹 ‘ 𝑐 ) − 1 ) ) ) |
| 105 |
101 102
|
ssfid |
⊢ ( ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) ∧ ( 𝑐 ∈ 𝑅 ∧ ( 𝐹 ‘ 𝑐 ) ∈ ℕ ) ) ∧ ( 𝑑 ∈ 𝑅 ∧ 𝑧 ⊆ ( 1 ... ( ( 𝐹 ‘ 𝑐 ) − 1 ) ) ) ) → 𝑧 ∈ Fin ) |
| 106 |
|
hashdom |
⊢ ( ( 𝑧 ∈ Fin ∧ ( 1 ... ( ( 𝐹 ‘ 𝑐 ) − 1 ) ) ∈ Fin ) → ( ( ♯ ‘ 𝑧 ) ≤ ( ♯ ‘ ( 1 ... ( ( 𝐹 ‘ 𝑐 ) − 1 ) ) ) ↔ 𝑧 ≼ ( 1 ... ( ( 𝐹 ‘ 𝑐 ) − 1 ) ) ) ) |
| 107 |
105 101 106
|
syl2anc |
⊢ ( ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) ∧ ( 𝑐 ∈ 𝑅 ∧ ( 𝐹 ‘ 𝑐 ) ∈ ℕ ) ) ∧ ( 𝑑 ∈ 𝑅 ∧ 𝑧 ⊆ ( 1 ... ( ( 𝐹 ‘ 𝑐 ) − 1 ) ) ) ) → ( ( ♯ ‘ 𝑧 ) ≤ ( ♯ ‘ ( 1 ... ( ( 𝐹 ‘ 𝑐 ) − 1 ) ) ) ↔ 𝑧 ≼ ( 1 ... ( ( 𝐹 ‘ 𝑐 ) − 1 ) ) ) ) |
| 108 |
104 107
|
mpbird |
⊢ ( ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) ∧ ( 𝑐 ∈ 𝑅 ∧ ( 𝐹 ‘ 𝑐 ) ∈ ℕ ) ) ∧ ( 𝑑 ∈ 𝑅 ∧ 𝑧 ⊆ ( 1 ... ( ( 𝐹 ‘ 𝑐 ) − 1 ) ) ) ) → ( ♯ ‘ 𝑧 ) ≤ ( ♯ ‘ ( 1 ... ( ( 𝐹 ‘ 𝑐 ) − 1 ) ) ) ) |
| 109 |
84
|
adantr |
⊢ ( ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) ∧ ( 𝑐 ∈ 𝑅 ∧ ( 𝐹 ‘ 𝑐 ) ∈ ℕ ) ) ∧ ( 𝑑 ∈ 𝑅 ∧ 𝑧 ⊆ ( 1 ... ( ( 𝐹 ‘ 𝑐 ) − 1 ) ) ) ) → ( ( 𝐹 ‘ 𝑐 ) − 1 ) ∈ ℕ0 ) |
| 110 |
|
hashfz1 |
⊢ ( ( ( 𝐹 ‘ 𝑐 ) − 1 ) ∈ ℕ0 → ( ♯ ‘ ( 1 ... ( ( 𝐹 ‘ 𝑐 ) − 1 ) ) ) = ( ( 𝐹 ‘ 𝑐 ) − 1 ) ) |
| 111 |
109 110
|
syl |
⊢ ( ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) ∧ ( 𝑐 ∈ 𝑅 ∧ ( 𝐹 ‘ 𝑐 ) ∈ ℕ ) ) ∧ ( 𝑑 ∈ 𝑅 ∧ 𝑧 ⊆ ( 1 ... ( ( 𝐹 ‘ 𝑐 ) − 1 ) ) ) ) → ( ♯ ‘ ( 1 ... ( ( 𝐹 ‘ 𝑐 ) − 1 ) ) ) = ( ( 𝐹 ‘ 𝑐 ) − 1 ) ) |
| 112 |
108 111
|
breqtrd |
⊢ ( ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) ∧ ( 𝑐 ∈ 𝑅 ∧ ( 𝐹 ‘ 𝑐 ) ∈ ℕ ) ) ∧ ( 𝑑 ∈ 𝑅 ∧ 𝑧 ⊆ ( 1 ... ( ( 𝐹 ‘ 𝑐 ) − 1 ) ) ) ) → ( ♯ ‘ 𝑧 ) ≤ ( ( 𝐹 ‘ 𝑐 ) − 1 ) ) |
| 113 |
|
hashcl |
⊢ ( 𝑧 ∈ Fin → ( ♯ ‘ 𝑧 ) ∈ ℕ0 ) |
| 114 |
105 113
|
syl |
⊢ ( ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) ∧ ( 𝑐 ∈ 𝑅 ∧ ( 𝐹 ‘ 𝑐 ) ∈ ℕ ) ) ∧ ( 𝑑 ∈ 𝑅 ∧ 𝑧 ⊆ ( 1 ... ( ( 𝐹 ‘ 𝑐 ) − 1 ) ) ) ) → ( ♯ ‘ 𝑧 ) ∈ ℕ0 ) |
| 115 |
5
|
ffvelcdmda |
⊢ ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) ∧ 𝑐 ∈ 𝑅 ) → ( 𝐹 ‘ 𝑐 ) ∈ ℕ0 ) |
| 116 |
115
|
adantrr |
⊢ ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) ∧ ( 𝑐 ∈ 𝑅 ∧ ( 𝐹 ‘ 𝑐 ) ∈ ℕ ) ) → ( 𝐹 ‘ 𝑐 ) ∈ ℕ0 ) |
| 117 |
116
|
adantr |
⊢ ( ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) ∧ ( 𝑐 ∈ 𝑅 ∧ ( 𝐹 ‘ 𝑐 ) ∈ ℕ ) ) ∧ ( 𝑑 ∈ 𝑅 ∧ 𝑧 ⊆ ( 1 ... ( ( 𝐹 ‘ 𝑐 ) − 1 ) ) ) ) → ( 𝐹 ‘ 𝑐 ) ∈ ℕ0 ) |
| 118 |
|
nn0ltlem1 |
⊢ ( ( ( ♯ ‘ 𝑧 ) ∈ ℕ0 ∧ ( 𝐹 ‘ 𝑐 ) ∈ ℕ0 ) → ( ( ♯ ‘ 𝑧 ) < ( 𝐹 ‘ 𝑐 ) ↔ ( ♯ ‘ 𝑧 ) ≤ ( ( 𝐹 ‘ 𝑐 ) − 1 ) ) ) |
| 119 |
114 117 118
|
syl2anc |
⊢ ( ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) ∧ ( 𝑐 ∈ 𝑅 ∧ ( 𝐹 ‘ 𝑐 ) ∈ ℕ ) ) ∧ ( 𝑑 ∈ 𝑅 ∧ 𝑧 ⊆ ( 1 ... ( ( 𝐹 ‘ 𝑐 ) − 1 ) ) ) ) → ( ( ♯ ‘ 𝑧 ) < ( 𝐹 ‘ 𝑐 ) ↔ ( ♯ ‘ 𝑧 ) ≤ ( ( 𝐹 ‘ 𝑐 ) − 1 ) ) ) |
| 120 |
112 119
|
mpbird |
⊢ ( ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) ∧ ( 𝑐 ∈ 𝑅 ∧ ( 𝐹 ‘ 𝑐 ) ∈ ℕ ) ) ∧ ( 𝑑 ∈ 𝑅 ∧ 𝑧 ⊆ ( 1 ... ( ( 𝐹 ‘ 𝑐 ) − 1 ) ) ) ) → ( ♯ ‘ 𝑧 ) < ( 𝐹 ‘ 𝑐 ) ) |
| 121 |
24 85
|
fvsn |
⊢ ( { 〈 ∅ , 𝑐 〉 } ‘ ∅ ) = 𝑐 |
| 122 |
|
f1ofn |
⊢ ( { 〈 ∅ , 𝑐 〉 } : { ∅ } –1-1-onto→ { 𝑐 } → { 〈 ∅ , 𝑐 〉 } Fn { ∅ } ) |
| 123 |
|
elpreima |
⊢ ( { 〈 ∅ , 𝑐 〉 } Fn { ∅ } → ( ∅ ∈ ( ◡ { 〈 ∅ , 𝑐 〉 } “ { 𝑑 } ) ↔ ( ∅ ∈ { ∅ } ∧ ( { 〈 ∅ , 𝑐 〉 } ‘ ∅ ) ∈ { 𝑑 } ) ) ) |
| 124 |
86 122 123
|
mp2b |
⊢ ( ∅ ∈ ( ◡ { 〈 ∅ , 𝑐 〉 } “ { 𝑑 } ) ↔ ( ∅ ∈ { ∅ } ∧ ( { 〈 ∅ , 𝑐 〉 } ‘ ∅ ) ∈ { 𝑑 } ) ) |
| 125 |
124
|
simprbi |
⊢ ( ∅ ∈ ( ◡ { 〈 ∅ , 𝑐 〉 } “ { 𝑑 } ) → ( { 〈 ∅ , 𝑐 〉 } ‘ ∅ ) ∈ { 𝑑 } ) |
| 126 |
121 125
|
eqeltrrid |
⊢ ( ∅ ∈ ( ◡ { 〈 ∅ , 𝑐 〉 } “ { 𝑑 } ) → 𝑐 ∈ { 𝑑 } ) |
| 127 |
|
elsni |
⊢ ( 𝑐 ∈ { 𝑑 } → 𝑐 = 𝑑 ) |
| 128 |
126 127
|
syl |
⊢ ( ∅ ∈ ( ◡ { 〈 ∅ , 𝑐 〉 } “ { 𝑑 } ) → 𝑐 = 𝑑 ) |
| 129 |
128
|
fveq2d |
⊢ ( ∅ ∈ ( ◡ { 〈 ∅ , 𝑐 〉 } “ { 𝑑 } ) → ( 𝐹 ‘ 𝑐 ) = ( 𝐹 ‘ 𝑑 ) ) |
| 130 |
129
|
breq2d |
⊢ ( ∅ ∈ ( ◡ { 〈 ∅ , 𝑐 〉 } “ { 𝑑 } ) → ( ( ♯ ‘ 𝑧 ) < ( 𝐹 ‘ 𝑐 ) ↔ ( ♯ ‘ 𝑧 ) < ( 𝐹 ‘ 𝑑 ) ) ) |
| 131 |
120 130
|
syl5ibcom |
⊢ ( ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) ∧ ( 𝑐 ∈ 𝑅 ∧ ( 𝐹 ‘ 𝑐 ) ∈ ℕ ) ) ∧ ( 𝑑 ∈ 𝑅 ∧ 𝑧 ⊆ ( 1 ... ( ( 𝐹 ‘ 𝑐 ) − 1 ) ) ) ) → ( ∅ ∈ ( ◡ { 〈 ∅ , 𝑐 〉 } “ { 𝑑 } ) → ( ♯ ‘ 𝑧 ) < ( 𝐹 ‘ 𝑑 ) ) ) |
| 132 |
100 131
|
biimtrid |
⊢ ( ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) ∧ ( 𝑐 ∈ 𝑅 ∧ ( 𝐹 ‘ 𝑐 ) ∈ ℕ ) ) ∧ ( 𝑑 ∈ 𝑅 ∧ 𝑧 ⊆ ( 1 ... ( ( 𝐹 ‘ 𝑐 ) − 1 ) ) ) ) → ( ( 𝑧 ( 𝑎 ∈ V , 𝑖 ∈ ℕ0 ↦ { 𝑏 ∈ 𝒫 𝑎 ∣ ( ♯ ‘ 𝑏 ) = 𝑖 } ) 0 ) ⊆ ( ◡ { 〈 ∅ , 𝑐 〉 } “ { 𝑑 } ) → ( ♯ ‘ 𝑧 ) < ( 𝐹 ‘ 𝑑 ) ) ) |
| 133 |
1 80 81 82 84 97 132
|
ramlb |
⊢ ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) ∧ ( 𝑐 ∈ 𝑅 ∧ ( 𝐹 ‘ 𝑐 ) ∈ ℕ ) ) → ( ( 𝐹 ‘ 𝑐 ) − 1 ) < ( 0 Ramsey 𝐹 ) ) |
| 134 |
|
ramubcl |
⊢ ( ( ( 0 ∈ ℕ0 ∧ 𝑅 ∈ 𝑉 ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ( sup ( ran 𝐹 , ℝ , < ) ∈ ℕ0 ∧ ( 0 Ramsey 𝐹 ) ≤ sup ( ran 𝐹 , ℝ , < ) ) ) → ( 0 Ramsey 𝐹 ) ∈ ℕ0 ) |
| 135 |
3 4 5 18 75 134
|
syl32anc |
⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) → ( 0 Ramsey 𝐹 ) ∈ ℕ0 ) |
| 136 |
135
|
adantr |
⊢ ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) ∧ ( 𝑐 ∈ 𝑅 ∧ ( 𝐹 ‘ 𝑐 ) ∈ ℕ ) ) → ( 0 Ramsey 𝐹 ) ∈ ℕ0 ) |
| 137 |
|
nn0lem1lt |
⊢ ( ( ( 𝐹 ‘ 𝑐 ) ∈ ℕ0 ∧ ( 0 Ramsey 𝐹 ) ∈ ℕ0 ) → ( ( 𝐹 ‘ 𝑐 ) ≤ ( 0 Ramsey 𝐹 ) ↔ ( ( 𝐹 ‘ 𝑐 ) − 1 ) < ( 0 Ramsey 𝐹 ) ) ) |
| 138 |
116 136 137
|
syl2anc |
⊢ ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) ∧ ( 𝑐 ∈ 𝑅 ∧ ( 𝐹 ‘ 𝑐 ) ∈ ℕ ) ) → ( ( 𝐹 ‘ 𝑐 ) ≤ ( 0 Ramsey 𝐹 ) ↔ ( ( 𝐹 ‘ 𝑐 ) − 1 ) < ( 0 Ramsey 𝐹 ) ) ) |
| 139 |
133 138
|
mpbird |
⊢ ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) ∧ ( 𝑐 ∈ 𝑅 ∧ ( 𝐹 ‘ 𝑐 ) ∈ ℕ ) ) → ( 𝐹 ‘ 𝑐 ) ≤ ( 0 Ramsey 𝐹 ) ) |
| 140 |
139
|
expr |
⊢ ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) ∧ 𝑐 ∈ 𝑅 ) → ( ( 𝐹 ‘ 𝑐 ) ∈ ℕ → ( 𝐹 ‘ 𝑐 ) ≤ ( 0 Ramsey 𝐹 ) ) ) |
| 141 |
135
|
adantr |
⊢ ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) ∧ 𝑐 ∈ 𝑅 ) → ( 0 Ramsey 𝐹 ) ∈ ℕ0 ) |
| 142 |
141
|
nn0ge0d |
⊢ ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) ∧ 𝑐 ∈ 𝑅 ) → 0 ≤ ( 0 Ramsey 𝐹 ) ) |
| 143 |
|
breq1 |
⊢ ( ( 𝐹 ‘ 𝑐 ) = 0 → ( ( 𝐹 ‘ 𝑐 ) ≤ ( 0 Ramsey 𝐹 ) ↔ 0 ≤ ( 0 Ramsey 𝐹 ) ) ) |
| 144 |
142 143
|
syl5ibrcom |
⊢ ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) ∧ 𝑐 ∈ 𝑅 ) → ( ( 𝐹 ‘ 𝑐 ) = 0 → ( 𝐹 ‘ 𝑐 ) ≤ ( 0 Ramsey 𝐹 ) ) ) |
| 145 |
|
elnn0 |
⊢ ( ( 𝐹 ‘ 𝑐 ) ∈ ℕ0 ↔ ( ( 𝐹 ‘ 𝑐 ) ∈ ℕ ∨ ( 𝐹 ‘ 𝑐 ) = 0 ) ) |
| 146 |
115 145
|
sylib |
⊢ ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) ∧ 𝑐 ∈ 𝑅 ) → ( ( 𝐹 ‘ 𝑐 ) ∈ ℕ ∨ ( 𝐹 ‘ 𝑐 ) = 0 ) ) |
| 147 |
140 144 146
|
mpjaod |
⊢ ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) ∧ 𝑐 ∈ 𝑅 ) → ( 𝐹 ‘ 𝑐 ) ≤ ( 0 Ramsey 𝐹 ) ) |
| 148 |
|
breq1 |
⊢ ( ( 𝐹 ‘ 𝑐 ) = sup ( ran 𝐹 , ℝ , < ) → ( ( 𝐹 ‘ 𝑐 ) ≤ ( 0 Ramsey 𝐹 ) ↔ sup ( ran 𝐹 , ℝ , < ) ≤ ( 0 Ramsey 𝐹 ) ) ) |
| 149 |
147 148
|
syl5ibcom |
⊢ ( ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) ∧ 𝑐 ∈ 𝑅 ) → ( ( 𝐹 ‘ 𝑐 ) = sup ( ran 𝐹 , ℝ , < ) → sup ( ran 𝐹 , ℝ , < ) ≤ ( 0 Ramsey 𝐹 ) ) ) |
| 150 |
149
|
rexlimdva |
⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) → ( ∃ 𝑐 ∈ 𝑅 ( 𝐹 ‘ 𝑐 ) = sup ( ran 𝐹 , ℝ , < ) → sup ( ran 𝐹 , ℝ , < ) ≤ ( 0 Ramsey 𝐹 ) ) ) |
| 151 |
79 150
|
mpd |
⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) → sup ( ran 𝐹 , ℝ , < ) ≤ ( 0 Ramsey 𝐹 ) ) |
| 152 |
135
|
nn0red |
⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) → ( 0 Ramsey 𝐹 ) ∈ ℝ ) |
| 153 |
152 35
|
letri3d |
⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) → ( ( 0 Ramsey 𝐹 ) = sup ( ran 𝐹 , ℝ , < ) ↔ ( ( 0 Ramsey 𝐹 ) ≤ sup ( ran 𝐹 , ℝ , < ) ∧ sup ( ran 𝐹 , ℝ , < ) ≤ ( 0 Ramsey 𝐹 ) ) ) ) |
| 154 |
75 151 153
|
mpbir2and |
⊢ ( ( ( 𝑅 ∈ 𝑉 ∧ 𝑅 ≠ ∅ ∧ 𝐹 : 𝑅 ⟶ ℕ0 ) ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ ran 𝐹 𝑦 ≤ 𝑥 ) → ( 0 Ramsey 𝐹 ) = sup ( ran 𝐹 , ℝ , < ) ) |