| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid | ⊢ ( 𝑎  ∈  V ,  𝑖  ∈  ℕ0  ↦  { 𝑏  ∈  𝒫  𝑎  ∣  ( ♯ ‘ 𝑏 )  =  𝑖 } )  =  ( 𝑎  ∈  V ,  𝑖  ∈  ℕ0  ↦  { 𝑏  ∈  𝒫  𝑎  ∣  ( ♯ ‘ 𝑏 )  =  𝑖 } ) | 
						
							| 2 |  | 0nn0 | ⊢ 0  ∈  ℕ0 | 
						
							| 3 | 2 | a1i | ⊢ ( ( ( 𝑅  ∈  𝑉  ∧  𝑅  ≠  ∅  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  ∧  ∃ 𝑥  ∈  ℤ ∀ 𝑦  ∈  ran  𝐹 𝑦  ≤  𝑥 )  →  0  ∈  ℕ0 ) | 
						
							| 4 |  | simpl1 | ⊢ ( ( ( 𝑅  ∈  𝑉  ∧  𝑅  ≠  ∅  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  ∧  ∃ 𝑥  ∈  ℤ ∀ 𝑦  ∈  ran  𝐹 𝑦  ≤  𝑥 )  →  𝑅  ∈  𝑉 ) | 
						
							| 5 |  | simpl3 | ⊢ ( ( ( 𝑅  ∈  𝑉  ∧  𝑅  ≠  ∅  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  ∧  ∃ 𝑥  ∈  ℤ ∀ 𝑦  ∈  ran  𝐹 𝑦  ≤  𝑥 )  →  𝐹 : 𝑅 ⟶ ℕ0 ) | 
						
							| 6 | 5 | frnd | ⊢ ( ( ( 𝑅  ∈  𝑉  ∧  𝑅  ≠  ∅  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  ∧  ∃ 𝑥  ∈  ℤ ∀ 𝑦  ∈  ran  𝐹 𝑦  ≤  𝑥 )  →  ran  𝐹  ⊆  ℕ0 ) | 
						
							| 7 |  | nn0ssz | ⊢ ℕ0  ⊆  ℤ | 
						
							| 8 | 6 7 | sstrdi | ⊢ ( ( ( 𝑅  ∈  𝑉  ∧  𝑅  ≠  ∅  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  ∧  ∃ 𝑥  ∈  ℤ ∀ 𝑦  ∈  ran  𝐹 𝑦  ≤  𝑥 )  →  ran  𝐹  ⊆  ℤ ) | 
						
							| 9 | 5 | fdmd | ⊢ ( ( ( 𝑅  ∈  𝑉  ∧  𝑅  ≠  ∅  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  ∧  ∃ 𝑥  ∈  ℤ ∀ 𝑦  ∈  ran  𝐹 𝑦  ≤  𝑥 )  →  dom  𝐹  =  𝑅 ) | 
						
							| 10 |  | simpl2 | ⊢ ( ( ( 𝑅  ∈  𝑉  ∧  𝑅  ≠  ∅  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  ∧  ∃ 𝑥  ∈  ℤ ∀ 𝑦  ∈  ran  𝐹 𝑦  ≤  𝑥 )  →  𝑅  ≠  ∅ ) | 
						
							| 11 | 9 10 | eqnetrd | ⊢ ( ( ( 𝑅  ∈  𝑉  ∧  𝑅  ≠  ∅  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  ∧  ∃ 𝑥  ∈  ℤ ∀ 𝑦  ∈  ran  𝐹 𝑦  ≤  𝑥 )  →  dom  𝐹  ≠  ∅ ) | 
						
							| 12 |  | dm0rn0 | ⊢ ( dom  𝐹  =  ∅  ↔  ran  𝐹  =  ∅ ) | 
						
							| 13 | 12 | necon3bii | ⊢ ( dom  𝐹  ≠  ∅  ↔  ran  𝐹  ≠  ∅ ) | 
						
							| 14 | 11 13 | sylib | ⊢ ( ( ( 𝑅  ∈  𝑉  ∧  𝑅  ≠  ∅  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  ∧  ∃ 𝑥  ∈  ℤ ∀ 𝑦  ∈  ran  𝐹 𝑦  ≤  𝑥 )  →  ran  𝐹  ≠  ∅ ) | 
						
							| 15 |  | simpr | ⊢ ( ( ( 𝑅  ∈  𝑉  ∧  𝑅  ≠  ∅  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  ∧  ∃ 𝑥  ∈  ℤ ∀ 𝑦  ∈  ran  𝐹 𝑦  ≤  𝑥 )  →  ∃ 𝑥  ∈  ℤ ∀ 𝑦  ∈  ran  𝐹 𝑦  ≤  𝑥 ) | 
						
							| 16 |  | suprzcl2 | ⊢ ( ( ran  𝐹  ⊆  ℤ  ∧  ran  𝐹  ≠  ∅  ∧  ∃ 𝑥  ∈  ℤ ∀ 𝑦  ∈  ran  𝐹 𝑦  ≤  𝑥 )  →  sup ( ran  𝐹 ,  ℝ ,   <  )  ∈  ran  𝐹 ) | 
						
							| 17 | 8 14 15 16 | syl3anc | ⊢ ( ( ( 𝑅  ∈  𝑉  ∧  𝑅  ≠  ∅  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  ∧  ∃ 𝑥  ∈  ℤ ∀ 𝑦  ∈  ran  𝐹 𝑦  ≤  𝑥 )  →  sup ( ran  𝐹 ,  ℝ ,   <  )  ∈  ran  𝐹 ) | 
						
							| 18 | 6 17 | sseldd | ⊢ ( ( ( 𝑅  ∈  𝑉  ∧  𝑅  ≠  ∅  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  ∧  ∃ 𝑥  ∈  ℤ ∀ 𝑦  ∈  ran  𝐹 𝑦  ≤  𝑥 )  →  sup ( ran  𝐹 ,  ℝ ,   <  )  ∈  ℕ0 ) | 
						
							| 19 | 1 | hashbc0 | ⊢ ( 𝑠  ∈  V  →  ( 𝑠 ( 𝑎  ∈  V ,  𝑖  ∈  ℕ0  ↦  { 𝑏  ∈  𝒫  𝑎  ∣  ( ♯ ‘ 𝑏 )  =  𝑖 } ) 0 )  =  { ∅ } ) | 
						
							| 20 | 19 | elv | ⊢ ( 𝑠 ( 𝑎  ∈  V ,  𝑖  ∈  ℕ0  ↦  { 𝑏  ∈  𝒫  𝑎  ∣  ( ♯ ‘ 𝑏 )  =  𝑖 } ) 0 )  =  { ∅ } | 
						
							| 21 | 20 | feq2i | ⊢ ( 𝑓 : ( 𝑠 ( 𝑎  ∈  V ,  𝑖  ∈  ℕ0  ↦  { 𝑏  ∈  𝒫  𝑎  ∣  ( ♯ ‘ 𝑏 )  =  𝑖 } ) 0 ) ⟶ 𝑅  ↔  𝑓 : { ∅ } ⟶ 𝑅 ) | 
						
							| 22 | 21 | biimpi | ⊢ ( 𝑓 : ( 𝑠 ( 𝑎  ∈  V ,  𝑖  ∈  ℕ0  ↦  { 𝑏  ∈  𝒫  𝑎  ∣  ( ♯ ‘ 𝑏 )  =  𝑖 } ) 0 ) ⟶ 𝑅  →  𝑓 : { ∅ } ⟶ 𝑅 ) | 
						
							| 23 |  | simprr | ⊢ ( ( ( ( 𝑅  ∈  𝑉  ∧  𝑅  ≠  ∅  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  ∧  ∃ 𝑥  ∈  ℤ ∀ 𝑦  ∈  ran  𝐹 𝑦  ≤  𝑥 )  ∧  ( sup ( ran  𝐹 ,  ℝ ,   <  )  ≤  ( ♯ ‘ 𝑠 )  ∧  𝑓 : { ∅ } ⟶ 𝑅 ) )  →  𝑓 : { ∅ } ⟶ 𝑅 ) | 
						
							| 24 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 25 | 24 | snid | ⊢ ∅  ∈  { ∅ } | 
						
							| 26 |  | ffvelcdm | ⊢ ( ( 𝑓 : { ∅ } ⟶ 𝑅  ∧  ∅  ∈  { ∅ } )  →  ( 𝑓 ‘ ∅ )  ∈  𝑅 ) | 
						
							| 27 | 23 25 26 | sylancl | ⊢ ( ( ( ( 𝑅  ∈  𝑉  ∧  𝑅  ≠  ∅  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  ∧  ∃ 𝑥  ∈  ℤ ∀ 𝑦  ∈  ran  𝐹 𝑦  ≤  𝑥 )  ∧  ( sup ( ran  𝐹 ,  ℝ ,   <  )  ≤  ( ♯ ‘ 𝑠 )  ∧  𝑓 : { ∅ } ⟶ 𝑅 ) )  →  ( 𝑓 ‘ ∅ )  ∈  𝑅 ) | 
						
							| 28 |  | vex | ⊢ 𝑠  ∈  V | 
						
							| 29 | 28 | pwid | ⊢ 𝑠  ∈  𝒫  𝑠 | 
						
							| 30 | 29 | a1i | ⊢ ( ( ( ( 𝑅  ∈  𝑉  ∧  𝑅  ≠  ∅  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  ∧  ∃ 𝑥  ∈  ℤ ∀ 𝑦  ∈  ran  𝐹 𝑦  ≤  𝑥 )  ∧  ( sup ( ran  𝐹 ,  ℝ ,   <  )  ≤  ( ♯ ‘ 𝑠 )  ∧  𝑓 : { ∅ } ⟶ 𝑅 ) )  →  𝑠  ∈  𝒫  𝑠 ) | 
						
							| 31 | 5 | adantr | ⊢ ( ( ( ( 𝑅  ∈  𝑉  ∧  𝑅  ≠  ∅  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  ∧  ∃ 𝑥  ∈  ℤ ∀ 𝑦  ∈  ran  𝐹 𝑦  ≤  𝑥 )  ∧  ( sup ( ran  𝐹 ,  ℝ ,   <  )  ≤  ( ♯ ‘ 𝑠 )  ∧  𝑓 : { ∅ } ⟶ 𝑅 ) )  →  𝐹 : 𝑅 ⟶ ℕ0 ) | 
						
							| 32 | 31 27 | ffvelcdmd | ⊢ ( ( ( ( 𝑅  ∈  𝑉  ∧  𝑅  ≠  ∅  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  ∧  ∃ 𝑥  ∈  ℤ ∀ 𝑦  ∈  ran  𝐹 𝑦  ≤  𝑥 )  ∧  ( sup ( ran  𝐹 ,  ℝ ,   <  )  ≤  ( ♯ ‘ 𝑠 )  ∧  𝑓 : { ∅ } ⟶ 𝑅 ) )  →  ( 𝐹 ‘ ( 𝑓 ‘ ∅ ) )  ∈  ℕ0 ) | 
						
							| 33 | 32 | nn0red | ⊢ ( ( ( ( 𝑅  ∈  𝑉  ∧  𝑅  ≠  ∅  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  ∧  ∃ 𝑥  ∈  ℤ ∀ 𝑦  ∈  ran  𝐹 𝑦  ≤  𝑥 )  ∧  ( sup ( ran  𝐹 ,  ℝ ,   <  )  ≤  ( ♯ ‘ 𝑠 )  ∧  𝑓 : { ∅ } ⟶ 𝑅 ) )  →  ( 𝐹 ‘ ( 𝑓 ‘ ∅ ) )  ∈  ℝ ) | 
						
							| 34 | 33 | rexrd | ⊢ ( ( ( ( 𝑅  ∈  𝑉  ∧  𝑅  ≠  ∅  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  ∧  ∃ 𝑥  ∈  ℤ ∀ 𝑦  ∈  ran  𝐹 𝑦  ≤  𝑥 )  ∧  ( sup ( ran  𝐹 ,  ℝ ,   <  )  ≤  ( ♯ ‘ 𝑠 )  ∧  𝑓 : { ∅ } ⟶ 𝑅 ) )  →  ( 𝐹 ‘ ( 𝑓 ‘ ∅ ) )  ∈  ℝ* ) | 
						
							| 35 | 18 | nn0red | ⊢ ( ( ( 𝑅  ∈  𝑉  ∧  𝑅  ≠  ∅  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  ∧  ∃ 𝑥  ∈  ℤ ∀ 𝑦  ∈  ran  𝐹 𝑦  ≤  𝑥 )  →  sup ( ran  𝐹 ,  ℝ ,   <  )  ∈  ℝ ) | 
						
							| 36 | 35 | rexrd | ⊢ ( ( ( 𝑅  ∈  𝑉  ∧  𝑅  ≠  ∅  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  ∧  ∃ 𝑥  ∈  ℤ ∀ 𝑦  ∈  ran  𝐹 𝑦  ≤  𝑥 )  →  sup ( ran  𝐹 ,  ℝ ,   <  )  ∈  ℝ* ) | 
						
							| 37 | 36 | adantr | ⊢ ( ( ( ( 𝑅  ∈  𝑉  ∧  𝑅  ≠  ∅  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  ∧  ∃ 𝑥  ∈  ℤ ∀ 𝑦  ∈  ran  𝐹 𝑦  ≤  𝑥 )  ∧  ( sup ( ran  𝐹 ,  ℝ ,   <  )  ≤  ( ♯ ‘ 𝑠 )  ∧  𝑓 : { ∅ } ⟶ 𝑅 ) )  →  sup ( ran  𝐹 ,  ℝ ,   <  )  ∈  ℝ* ) | 
						
							| 38 |  | hashxrcl | ⊢ ( 𝑠  ∈  V  →  ( ♯ ‘ 𝑠 )  ∈  ℝ* ) | 
						
							| 39 | 28 38 | mp1i | ⊢ ( ( ( ( 𝑅  ∈  𝑉  ∧  𝑅  ≠  ∅  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  ∧  ∃ 𝑥  ∈  ℤ ∀ 𝑦  ∈  ran  𝐹 𝑦  ≤  𝑥 )  ∧  ( sup ( ran  𝐹 ,  ℝ ,   <  )  ≤  ( ♯ ‘ 𝑠 )  ∧  𝑓 : { ∅ } ⟶ 𝑅 ) )  →  ( ♯ ‘ 𝑠 )  ∈  ℝ* ) | 
						
							| 40 | 8 | adantr | ⊢ ( ( ( ( 𝑅  ∈  𝑉  ∧  𝑅  ≠  ∅  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  ∧  ∃ 𝑥  ∈  ℤ ∀ 𝑦  ∈  ran  𝐹 𝑦  ≤  𝑥 )  ∧  ( sup ( ran  𝐹 ,  ℝ ,   <  )  ≤  ( ♯ ‘ 𝑠 )  ∧  𝑓 : { ∅ } ⟶ 𝑅 ) )  →  ran  𝐹  ⊆  ℤ ) | 
						
							| 41 | 15 | adantr | ⊢ ( ( ( ( 𝑅  ∈  𝑉  ∧  𝑅  ≠  ∅  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  ∧  ∃ 𝑥  ∈  ℤ ∀ 𝑦  ∈  ran  𝐹 𝑦  ≤  𝑥 )  ∧  ( sup ( ran  𝐹 ,  ℝ ,   <  )  ≤  ( ♯ ‘ 𝑠 )  ∧  𝑓 : { ∅ } ⟶ 𝑅 ) )  →  ∃ 𝑥  ∈  ℤ ∀ 𝑦  ∈  ran  𝐹 𝑦  ≤  𝑥 ) | 
						
							| 42 | 31 | ffnd | ⊢ ( ( ( ( 𝑅  ∈  𝑉  ∧  𝑅  ≠  ∅  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  ∧  ∃ 𝑥  ∈  ℤ ∀ 𝑦  ∈  ran  𝐹 𝑦  ≤  𝑥 )  ∧  ( sup ( ran  𝐹 ,  ℝ ,   <  )  ≤  ( ♯ ‘ 𝑠 )  ∧  𝑓 : { ∅ } ⟶ 𝑅 ) )  →  𝐹  Fn  𝑅 ) | 
						
							| 43 |  | fnfvelrn | ⊢ ( ( 𝐹  Fn  𝑅  ∧  ( 𝑓 ‘ ∅ )  ∈  𝑅 )  →  ( 𝐹 ‘ ( 𝑓 ‘ ∅ ) )  ∈  ran  𝐹 ) | 
						
							| 44 | 42 27 43 | syl2anc | ⊢ ( ( ( ( 𝑅  ∈  𝑉  ∧  𝑅  ≠  ∅  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  ∧  ∃ 𝑥  ∈  ℤ ∀ 𝑦  ∈  ran  𝐹 𝑦  ≤  𝑥 )  ∧  ( sup ( ran  𝐹 ,  ℝ ,   <  )  ≤  ( ♯ ‘ 𝑠 )  ∧  𝑓 : { ∅ } ⟶ 𝑅 ) )  →  ( 𝐹 ‘ ( 𝑓 ‘ ∅ ) )  ∈  ran  𝐹 ) | 
						
							| 45 |  | suprzub | ⊢ ( ( ran  𝐹  ⊆  ℤ  ∧  ∃ 𝑥  ∈  ℤ ∀ 𝑦  ∈  ran  𝐹 𝑦  ≤  𝑥  ∧  ( 𝐹 ‘ ( 𝑓 ‘ ∅ ) )  ∈  ran  𝐹 )  →  ( 𝐹 ‘ ( 𝑓 ‘ ∅ ) )  ≤  sup ( ran  𝐹 ,  ℝ ,   <  ) ) | 
						
							| 46 | 40 41 44 45 | syl3anc | ⊢ ( ( ( ( 𝑅  ∈  𝑉  ∧  𝑅  ≠  ∅  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  ∧  ∃ 𝑥  ∈  ℤ ∀ 𝑦  ∈  ran  𝐹 𝑦  ≤  𝑥 )  ∧  ( sup ( ran  𝐹 ,  ℝ ,   <  )  ≤  ( ♯ ‘ 𝑠 )  ∧  𝑓 : { ∅ } ⟶ 𝑅 ) )  →  ( 𝐹 ‘ ( 𝑓 ‘ ∅ ) )  ≤  sup ( ran  𝐹 ,  ℝ ,   <  ) ) | 
						
							| 47 |  | simprl | ⊢ ( ( ( ( 𝑅  ∈  𝑉  ∧  𝑅  ≠  ∅  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  ∧  ∃ 𝑥  ∈  ℤ ∀ 𝑦  ∈  ran  𝐹 𝑦  ≤  𝑥 )  ∧  ( sup ( ran  𝐹 ,  ℝ ,   <  )  ≤  ( ♯ ‘ 𝑠 )  ∧  𝑓 : { ∅ } ⟶ 𝑅 ) )  →  sup ( ran  𝐹 ,  ℝ ,   <  )  ≤  ( ♯ ‘ 𝑠 ) ) | 
						
							| 48 | 34 37 39 46 47 | xrletrd | ⊢ ( ( ( ( 𝑅  ∈  𝑉  ∧  𝑅  ≠  ∅  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  ∧  ∃ 𝑥  ∈  ℤ ∀ 𝑦  ∈  ran  𝐹 𝑦  ≤  𝑥 )  ∧  ( sup ( ran  𝐹 ,  ℝ ,   <  )  ≤  ( ♯ ‘ 𝑠 )  ∧  𝑓 : { ∅ } ⟶ 𝑅 ) )  →  ( 𝐹 ‘ ( 𝑓 ‘ ∅ ) )  ≤  ( ♯ ‘ 𝑠 ) ) | 
						
							| 49 | 25 | a1i | ⊢ ( ( ( ( 𝑅  ∈  𝑉  ∧  𝑅  ≠  ∅  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  ∧  ∃ 𝑥  ∈  ℤ ∀ 𝑦  ∈  ran  𝐹 𝑦  ≤  𝑥 )  ∧  ( sup ( ran  𝐹 ,  ℝ ,   <  )  ≤  ( ♯ ‘ 𝑠 )  ∧  𝑓 : { ∅ } ⟶ 𝑅 ) )  →  ∅  ∈  { ∅ } ) | 
						
							| 50 |  | fvex | ⊢ ( 𝑓 ‘ ∅ )  ∈  V | 
						
							| 51 | 50 | snid | ⊢ ( 𝑓 ‘ ∅ )  ∈  { ( 𝑓 ‘ ∅ ) } | 
						
							| 52 | 51 | a1i | ⊢ ( ( ( ( 𝑅  ∈  𝑉  ∧  𝑅  ≠  ∅  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  ∧  ∃ 𝑥  ∈  ℤ ∀ 𝑦  ∈  ran  𝐹 𝑦  ≤  𝑥 )  ∧  ( sup ( ran  𝐹 ,  ℝ ,   <  )  ≤  ( ♯ ‘ 𝑠 )  ∧  𝑓 : { ∅ } ⟶ 𝑅 ) )  →  ( 𝑓 ‘ ∅ )  ∈  { ( 𝑓 ‘ ∅ ) } ) | 
						
							| 53 |  | ffn | ⊢ ( 𝑓 : { ∅ } ⟶ 𝑅  →  𝑓  Fn  { ∅ } ) | 
						
							| 54 |  | elpreima | ⊢ ( 𝑓  Fn  { ∅ }  →  ( ∅  ∈  ( ◡ 𝑓  “  { ( 𝑓 ‘ ∅ ) } )  ↔  ( ∅  ∈  { ∅ }  ∧  ( 𝑓 ‘ ∅ )  ∈  { ( 𝑓 ‘ ∅ ) } ) ) ) | 
						
							| 55 | 23 53 54 | 3syl | ⊢ ( ( ( ( 𝑅  ∈  𝑉  ∧  𝑅  ≠  ∅  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  ∧  ∃ 𝑥  ∈  ℤ ∀ 𝑦  ∈  ran  𝐹 𝑦  ≤  𝑥 )  ∧  ( sup ( ran  𝐹 ,  ℝ ,   <  )  ≤  ( ♯ ‘ 𝑠 )  ∧  𝑓 : { ∅ } ⟶ 𝑅 ) )  →  ( ∅  ∈  ( ◡ 𝑓  “  { ( 𝑓 ‘ ∅ ) } )  ↔  ( ∅  ∈  { ∅ }  ∧  ( 𝑓 ‘ ∅ )  ∈  { ( 𝑓 ‘ ∅ ) } ) ) ) | 
						
							| 56 | 49 52 55 | mpbir2and | ⊢ ( ( ( ( 𝑅  ∈  𝑉  ∧  𝑅  ≠  ∅  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  ∧  ∃ 𝑥  ∈  ℤ ∀ 𝑦  ∈  ran  𝐹 𝑦  ≤  𝑥 )  ∧  ( sup ( ran  𝐹 ,  ℝ ,   <  )  ≤  ( ♯ ‘ 𝑠 )  ∧  𝑓 : { ∅ } ⟶ 𝑅 ) )  →  ∅  ∈  ( ◡ 𝑓  “  { ( 𝑓 ‘ ∅ ) } ) ) | 
						
							| 57 |  | fveq2 | ⊢ ( 𝑐  =  ( 𝑓 ‘ ∅ )  →  ( 𝐹 ‘ 𝑐 )  =  ( 𝐹 ‘ ( 𝑓 ‘ ∅ ) ) ) | 
						
							| 58 | 57 | breq1d | ⊢ ( 𝑐  =  ( 𝑓 ‘ ∅ )  →  ( ( 𝐹 ‘ 𝑐 )  ≤  ( ♯ ‘ 𝑧 )  ↔  ( 𝐹 ‘ ( 𝑓 ‘ ∅ ) )  ≤  ( ♯ ‘ 𝑧 ) ) ) | 
						
							| 59 | 1 | hashbc0 | ⊢ ( 𝑧  ∈  V  →  ( 𝑧 ( 𝑎  ∈  V ,  𝑖  ∈  ℕ0  ↦  { 𝑏  ∈  𝒫  𝑎  ∣  ( ♯ ‘ 𝑏 )  =  𝑖 } ) 0 )  =  { ∅ } ) | 
						
							| 60 | 59 | elv | ⊢ ( 𝑧 ( 𝑎  ∈  V ,  𝑖  ∈  ℕ0  ↦  { 𝑏  ∈  𝒫  𝑎  ∣  ( ♯ ‘ 𝑏 )  =  𝑖 } ) 0 )  =  { ∅ } | 
						
							| 61 | 60 | sseq1i | ⊢ ( ( 𝑧 ( 𝑎  ∈  V ,  𝑖  ∈  ℕ0  ↦  { 𝑏  ∈  𝒫  𝑎  ∣  ( ♯ ‘ 𝑏 )  =  𝑖 } ) 0 )  ⊆  ( ◡ 𝑓  “  { 𝑐 } )  ↔  { ∅ }  ⊆  ( ◡ 𝑓  “  { 𝑐 } ) ) | 
						
							| 62 | 24 | snss | ⊢ ( ∅  ∈  ( ◡ 𝑓  “  { 𝑐 } )  ↔  { ∅ }  ⊆  ( ◡ 𝑓  “  { 𝑐 } ) ) | 
						
							| 63 | 61 62 | bitr4i | ⊢ ( ( 𝑧 ( 𝑎  ∈  V ,  𝑖  ∈  ℕ0  ↦  { 𝑏  ∈  𝒫  𝑎  ∣  ( ♯ ‘ 𝑏 )  =  𝑖 } ) 0 )  ⊆  ( ◡ 𝑓  “  { 𝑐 } )  ↔  ∅  ∈  ( ◡ 𝑓  “  { 𝑐 } ) ) | 
						
							| 64 |  | sneq | ⊢ ( 𝑐  =  ( 𝑓 ‘ ∅ )  →  { 𝑐 }  =  { ( 𝑓 ‘ ∅ ) } ) | 
						
							| 65 | 64 | imaeq2d | ⊢ ( 𝑐  =  ( 𝑓 ‘ ∅ )  →  ( ◡ 𝑓  “  { 𝑐 } )  =  ( ◡ 𝑓  “  { ( 𝑓 ‘ ∅ ) } ) ) | 
						
							| 66 | 65 | eleq2d | ⊢ ( 𝑐  =  ( 𝑓 ‘ ∅ )  →  ( ∅  ∈  ( ◡ 𝑓  “  { 𝑐 } )  ↔  ∅  ∈  ( ◡ 𝑓  “  { ( 𝑓 ‘ ∅ ) } ) ) ) | 
						
							| 67 | 63 66 | bitrid | ⊢ ( 𝑐  =  ( 𝑓 ‘ ∅ )  →  ( ( 𝑧 ( 𝑎  ∈  V ,  𝑖  ∈  ℕ0  ↦  { 𝑏  ∈  𝒫  𝑎  ∣  ( ♯ ‘ 𝑏 )  =  𝑖 } ) 0 )  ⊆  ( ◡ 𝑓  “  { 𝑐 } )  ↔  ∅  ∈  ( ◡ 𝑓  “  { ( 𝑓 ‘ ∅ ) } ) ) ) | 
						
							| 68 | 58 67 | anbi12d | ⊢ ( 𝑐  =  ( 𝑓 ‘ ∅ )  →  ( ( ( 𝐹 ‘ 𝑐 )  ≤  ( ♯ ‘ 𝑧 )  ∧  ( 𝑧 ( 𝑎  ∈  V ,  𝑖  ∈  ℕ0  ↦  { 𝑏  ∈  𝒫  𝑎  ∣  ( ♯ ‘ 𝑏 )  =  𝑖 } ) 0 )  ⊆  ( ◡ 𝑓  “  { 𝑐 } ) )  ↔  ( ( 𝐹 ‘ ( 𝑓 ‘ ∅ ) )  ≤  ( ♯ ‘ 𝑧 )  ∧  ∅  ∈  ( ◡ 𝑓  “  { ( 𝑓 ‘ ∅ ) } ) ) ) ) | 
						
							| 69 |  | fveq2 | ⊢ ( 𝑧  =  𝑠  →  ( ♯ ‘ 𝑧 )  =  ( ♯ ‘ 𝑠 ) ) | 
						
							| 70 | 69 | breq2d | ⊢ ( 𝑧  =  𝑠  →  ( ( 𝐹 ‘ ( 𝑓 ‘ ∅ ) )  ≤  ( ♯ ‘ 𝑧 )  ↔  ( 𝐹 ‘ ( 𝑓 ‘ ∅ ) )  ≤  ( ♯ ‘ 𝑠 ) ) ) | 
						
							| 71 | 70 | anbi1d | ⊢ ( 𝑧  =  𝑠  →  ( ( ( 𝐹 ‘ ( 𝑓 ‘ ∅ ) )  ≤  ( ♯ ‘ 𝑧 )  ∧  ∅  ∈  ( ◡ 𝑓  “  { ( 𝑓 ‘ ∅ ) } ) )  ↔  ( ( 𝐹 ‘ ( 𝑓 ‘ ∅ ) )  ≤  ( ♯ ‘ 𝑠 )  ∧  ∅  ∈  ( ◡ 𝑓  “  { ( 𝑓 ‘ ∅ ) } ) ) ) ) | 
						
							| 72 | 68 71 | rspc2ev | ⊢ ( ( ( 𝑓 ‘ ∅ )  ∈  𝑅  ∧  𝑠  ∈  𝒫  𝑠  ∧  ( ( 𝐹 ‘ ( 𝑓 ‘ ∅ ) )  ≤  ( ♯ ‘ 𝑠 )  ∧  ∅  ∈  ( ◡ 𝑓  “  { ( 𝑓 ‘ ∅ ) } ) ) )  →  ∃ 𝑐  ∈  𝑅 ∃ 𝑧  ∈  𝒫  𝑠 ( ( 𝐹 ‘ 𝑐 )  ≤  ( ♯ ‘ 𝑧 )  ∧  ( 𝑧 ( 𝑎  ∈  V ,  𝑖  ∈  ℕ0  ↦  { 𝑏  ∈  𝒫  𝑎  ∣  ( ♯ ‘ 𝑏 )  =  𝑖 } ) 0 )  ⊆  ( ◡ 𝑓  “  { 𝑐 } ) ) ) | 
						
							| 73 | 27 30 48 56 72 | syl112anc | ⊢ ( ( ( ( 𝑅  ∈  𝑉  ∧  𝑅  ≠  ∅  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  ∧  ∃ 𝑥  ∈  ℤ ∀ 𝑦  ∈  ran  𝐹 𝑦  ≤  𝑥 )  ∧  ( sup ( ran  𝐹 ,  ℝ ,   <  )  ≤  ( ♯ ‘ 𝑠 )  ∧  𝑓 : { ∅ } ⟶ 𝑅 ) )  →  ∃ 𝑐  ∈  𝑅 ∃ 𝑧  ∈  𝒫  𝑠 ( ( 𝐹 ‘ 𝑐 )  ≤  ( ♯ ‘ 𝑧 )  ∧  ( 𝑧 ( 𝑎  ∈  V ,  𝑖  ∈  ℕ0  ↦  { 𝑏  ∈  𝒫  𝑎  ∣  ( ♯ ‘ 𝑏 )  =  𝑖 } ) 0 )  ⊆  ( ◡ 𝑓  “  { 𝑐 } ) ) ) | 
						
							| 74 | 22 73 | sylanr2 | ⊢ ( ( ( ( 𝑅  ∈  𝑉  ∧  𝑅  ≠  ∅  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  ∧  ∃ 𝑥  ∈  ℤ ∀ 𝑦  ∈  ran  𝐹 𝑦  ≤  𝑥 )  ∧  ( sup ( ran  𝐹 ,  ℝ ,   <  )  ≤  ( ♯ ‘ 𝑠 )  ∧  𝑓 : ( 𝑠 ( 𝑎  ∈  V ,  𝑖  ∈  ℕ0  ↦  { 𝑏  ∈  𝒫  𝑎  ∣  ( ♯ ‘ 𝑏 )  =  𝑖 } ) 0 ) ⟶ 𝑅 ) )  →  ∃ 𝑐  ∈  𝑅 ∃ 𝑧  ∈  𝒫  𝑠 ( ( 𝐹 ‘ 𝑐 )  ≤  ( ♯ ‘ 𝑧 )  ∧  ( 𝑧 ( 𝑎  ∈  V ,  𝑖  ∈  ℕ0  ↦  { 𝑏  ∈  𝒫  𝑎  ∣  ( ♯ ‘ 𝑏 )  =  𝑖 } ) 0 )  ⊆  ( ◡ 𝑓  “  { 𝑐 } ) ) ) | 
						
							| 75 | 1 3 4 5 18 74 | ramub | ⊢ ( ( ( 𝑅  ∈  𝑉  ∧  𝑅  ≠  ∅  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  ∧  ∃ 𝑥  ∈  ℤ ∀ 𝑦  ∈  ran  𝐹 𝑦  ≤  𝑥 )  →  ( 0  Ramsey  𝐹 )  ≤  sup ( ran  𝐹 ,  ℝ ,   <  ) ) | 
						
							| 76 |  | ffn | ⊢ ( 𝐹 : 𝑅 ⟶ ℕ0  →  𝐹  Fn  𝑅 ) | 
						
							| 77 |  | fvelrnb | ⊢ ( 𝐹  Fn  𝑅  →  ( sup ( ran  𝐹 ,  ℝ ,   <  )  ∈  ran  𝐹  ↔  ∃ 𝑐  ∈  𝑅 ( 𝐹 ‘ 𝑐 )  =  sup ( ran  𝐹 ,  ℝ ,   <  ) ) ) | 
						
							| 78 | 5 76 77 | 3syl | ⊢ ( ( ( 𝑅  ∈  𝑉  ∧  𝑅  ≠  ∅  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  ∧  ∃ 𝑥  ∈  ℤ ∀ 𝑦  ∈  ran  𝐹 𝑦  ≤  𝑥 )  →  ( sup ( ran  𝐹 ,  ℝ ,   <  )  ∈  ran  𝐹  ↔  ∃ 𝑐  ∈  𝑅 ( 𝐹 ‘ 𝑐 )  =  sup ( ran  𝐹 ,  ℝ ,   <  ) ) ) | 
						
							| 79 | 17 78 | mpbid | ⊢ ( ( ( 𝑅  ∈  𝑉  ∧  𝑅  ≠  ∅  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  ∧  ∃ 𝑥  ∈  ℤ ∀ 𝑦  ∈  ran  𝐹 𝑦  ≤  𝑥 )  →  ∃ 𝑐  ∈  𝑅 ( 𝐹 ‘ 𝑐 )  =  sup ( ran  𝐹 ,  ℝ ,   <  ) ) | 
						
							| 80 | 2 | a1i | ⊢ ( ( ( ( 𝑅  ∈  𝑉  ∧  𝑅  ≠  ∅  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  ∧  ∃ 𝑥  ∈  ℤ ∀ 𝑦  ∈  ran  𝐹 𝑦  ≤  𝑥 )  ∧  ( 𝑐  ∈  𝑅  ∧  ( 𝐹 ‘ 𝑐 )  ∈  ℕ ) )  →  0  ∈  ℕ0 ) | 
						
							| 81 |  | simpll1 | ⊢ ( ( ( ( 𝑅  ∈  𝑉  ∧  𝑅  ≠  ∅  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  ∧  ∃ 𝑥  ∈  ℤ ∀ 𝑦  ∈  ran  𝐹 𝑦  ≤  𝑥 )  ∧  ( 𝑐  ∈  𝑅  ∧  ( 𝐹 ‘ 𝑐 )  ∈  ℕ ) )  →  𝑅  ∈  𝑉 ) | 
						
							| 82 |  | simpll3 | ⊢ ( ( ( ( 𝑅  ∈  𝑉  ∧  𝑅  ≠  ∅  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  ∧  ∃ 𝑥  ∈  ℤ ∀ 𝑦  ∈  ran  𝐹 𝑦  ≤  𝑥 )  ∧  ( 𝑐  ∈  𝑅  ∧  ( 𝐹 ‘ 𝑐 )  ∈  ℕ ) )  →  𝐹 : 𝑅 ⟶ ℕ0 ) | 
						
							| 83 |  | nnm1nn0 | ⊢ ( ( 𝐹 ‘ 𝑐 )  ∈  ℕ  →  ( ( 𝐹 ‘ 𝑐 )  −  1 )  ∈  ℕ0 ) | 
						
							| 84 | 83 | ad2antll | ⊢ ( ( ( ( 𝑅  ∈  𝑉  ∧  𝑅  ≠  ∅  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  ∧  ∃ 𝑥  ∈  ℤ ∀ 𝑦  ∈  ran  𝐹 𝑦  ≤  𝑥 )  ∧  ( 𝑐  ∈  𝑅  ∧  ( 𝐹 ‘ 𝑐 )  ∈  ℕ ) )  →  ( ( 𝐹 ‘ 𝑐 )  −  1 )  ∈  ℕ0 ) | 
						
							| 85 |  | vex | ⊢ 𝑐  ∈  V | 
						
							| 86 | 24 85 | f1osn | ⊢ { 〈 ∅ ,  𝑐 〉 } : { ∅ } –1-1-onto→ { 𝑐 } | 
						
							| 87 |  | f1of | ⊢ ( { 〈 ∅ ,  𝑐 〉 } : { ∅ } –1-1-onto→ { 𝑐 }  →  { 〈 ∅ ,  𝑐 〉 } : { ∅ } ⟶ { 𝑐 } ) | 
						
							| 88 | 86 87 | ax-mp | ⊢ { 〈 ∅ ,  𝑐 〉 } : { ∅ } ⟶ { 𝑐 } | 
						
							| 89 |  | simprl | ⊢ ( ( ( ( 𝑅  ∈  𝑉  ∧  𝑅  ≠  ∅  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  ∧  ∃ 𝑥  ∈  ℤ ∀ 𝑦  ∈  ran  𝐹 𝑦  ≤  𝑥 )  ∧  ( 𝑐  ∈  𝑅  ∧  ( 𝐹 ‘ 𝑐 )  ∈  ℕ ) )  →  𝑐  ∈  𝑅 ) | 
						
							| 90 | 89 | snssd | ⊢ ( ( ( ( 𝑅  ∈  𝑉  ∧  𝑅  ≠  ∅  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  ∧  ∃ 𝑥  ∈  ℤ ∀ 𝑦  ∈  ran  𝐹 𝑦  ≤  𝑥 )  ∧  ( 𝑐  ∈  𝑅  ∧  ( 𝐹 ‘ 𝑐 )  ∈  ℕ ) )  →  { 𝑐 }  ⊆  𝑅 ) | 
						
							| 91 |  | fss | ⊢ ( ( { 〈 ∅ ,  𝑐 〉 } : { ∅ } ⟶ { 𝑐 }  ∧  { 𝑐 }  ⊆  𝑅 )  →  { 〈 ∅ ,  𝑐 〉 } : { ∅ } ⟶ 𝑅 ) | 
						
							| 92 | 88 90 91 | sylancr | ⊢ ( ( ( ( 𝑅  ∈  𝑉  ∧  𝑅  ≠  ∅  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  ∧  ∃ 𝑥  ∈  ℤ ∀ 𝑦  ∈  ran  𝐹 𝑦  ≤  𝑥 )  ∧  ( 𝑐  ∈  𝑅  ∧  ( 𝐹 ‘ 𝑐 )  ∈  ℕ ) )  →  { 〈 ∅ ,  𝑐 〉 } : { ∅ } ⟶ 𝑅 ) | 
						
							| 93 |  | ovex | ⊢ ( 1 ... ( ( 𝐹 ‘ 𝑐 )  −  1 ) )  ∈  V | 
						
							| 94 | 1 | hashbc0 | ⊢ ( ( 1 ... ( ( 𝐹 ‘ 𝑐 )  −  1 ) )  ∈  V  →  ( ( 1 ... ( ( 𝐹 ‘ 𝑐 )  −  1 ) ) ( 𝑎  ∈  V ,  𝑖  ∈  ℕ0  ↦  { 𝑏  ∈  𝒫  𝑎  ∣  ( ♯ ‘ 𝑏 )  =  𝑖 } ) 0 )  =  { ∅ } ) | 
						
							| 95 | 93 94 | ax-mp | ⊢ ( ( 1 ... ( ( 𝐹 ‘ 𝑐 )  −  1 ) ) ( 𝑎  ∈  V ,  𝑖  ∈  ℕ0  ↦  { 𝑏  ∈  𝒫  𝑎  ∣  ( ♯ ‘ 𝑏 )  =  𝑖 } ) 0 )  =  { ∅ } | 
						
							| 96 | 95 | feq2i | ⊢ ( { 〈 ∅ ,  𝑐 〉 } : ( ( 1 ... ( ( 𝐹 ‘ 𝑐 )  −  1 ) ) ( 𝑎  ∈  V ,  𝑖  ∈  ℕ0  ↦  { 𝑏  ∈  𝒫  𝑎  ∣  ( ♯ ‘ 𝑏 )  =  𝑖 } ) 0 ) ⟶ 𝑅  ↔  { 〈 ∅ ,  𝑐 〉 } : { ∅ } ⟶ 𝑅 ) | 
						
							| 97 | 92 96 | sylibr | ⊢ ( ( ( ( 𝑅  ∈  𝑉  ∧  𝑅  ≠  ∅  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  ∧  ∃ 𝑥  ∈  ℤ ∀ 𝑦  ∈  ran  𝐹 𝑦  ≤  𝑥 )  ∧  ( 𝑐  ∈  𝑅  ∧  ( 𝐹 ‘ 𝑐 )  ∈  ℕ ) )  →  { 〈 ∅ ,  𝑐 〉 } : ( ( 1 ... ( ( 𝐹 ‘ 𝑐 )  −  1 ) ) ( 𝑎  ∈  V ,  𝑖  ∈  ℕ0  ↦  { 𝑏  ∈  𝒫  𝑎  ∣  ( ♯ ‘ 𝑏 )  =  𝑖 } ) 0 ) ⟶ 𝑅 ) | 
						
							| 98 | 60 | sseq1i | ⊢ ( ( 𝑧 ( 𝑎  ∈  V ,  𝑖  ∈  ℕ0  ↦  { 𝑏  ∈  𝒫  𝑎  ∣  ( ♯ ‘ 𝑏 )  =  𝑖 } ) 0 )  ⊆  ( ◡ { 〈 ∅ ,  𝑐 〉 }  “  { 𝑑 } )  ↔  { ∅ }  ⊆  ( ◡ { 〈 ∅ ,  𝑐 〉 }  “  { 𝑑 } ) ) | 
						
							| 99 | 24 | snss | ⊢ ( ∅  ∈  ( ◡ { 〈 ∅ ,  𝑐 〉 }  “  { 𝑑 } )  ↔  { ∅ }  ⊆  ( ◡ { 〈 ∅ ,  𝑐 〉 }  “  { 𝑑 } ) ) | 
						
							| 100 | 98 99 | bitr4i | ⊢ ( ( 𝑧 ( 𝑎  ∈  V ,  𝑖  ∈  ℕ0  ↦  { 𝑏  ∈  𝒫  𝑎  ∣  ( ♯ ‘ 𝑏 )  =  𝑖 } ) 0 )  ⊆  ( ◡ { 〈 ∅ ,  𝑐 〉 }  “  { 𝑑 } )  ↔  ∅  ∈  ( ◡ { 〈 ∅ ,  𝑐 〉 }  “  { 𝑑 } ) ) | 
						
							| 101 |  | fzfid | ⊢ ( ( ( ( ( 𝑅  ∈  𝑉  ∧  𝑅  ≠  ∅  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  ∧  ∃ 𝑥  ∈  ℤ ∀ 𝑦  ∈  ran  𝐹 𝑦  ≤  𝑥 )  ∧  ( 𝑐  ∈  𝑅  ∧  ( 𝐹 ‘ 𝑐 )  ∈  ℕ ) )  ∧  ( 𝑑  ∈  𝑅  ∧  𝑧  ⊆  ( 1 ... ( ( 𝐹 ‘ 𝑐 )  −  1 ) ) ) )  →  ( 1 ... ( ( 𝐹 ‘ 𝑐 )  −  1 ) )  ∈  Fin ) | 
						
							| 102 |  | simprr | ⊢ ( ( ( ( ( 𝑅  ∈  𝑉  ∧  𝑅  ≠  ∅  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  ∧  ∃ 𝑥  ∈  ℤ ∀ 𝑦  ∈  ran  𝐹 𝑦  ≤  𝑥 )  ∧  ( 𝑐  ∈  𝑅  ∧  ( 𝐹 ‘ 𝑐 )  ∈  ℕ ) )  ∧  ( 𝑑  ∈  𝑅  ∧  𝑧  ⊆  ( 1 ... ( ( 𝐹 ‘ 𝑐 )  −  1 ) ) ) )  →  𝑧  ⊆  ( 1 ... ( ( 𝐹 ‘ 𝑐 )  −  1 ) ) ) | 
						
							| 103 |  | ssdomg | ⊢ ( ( 1 ... ( ( 𝐹 ‘ 𝑐 )  −  1 ) )  ∈  Fin  →  ( 𝑧  ⊆  ( 1 ... ( ( 𝐹 ‘ 𝑐 )  −  1 ) )  →  𝑧  ≼  ( 1 ... ( ( 𝐹 ‘ 𝑐 )  −  1 ) ) ) ) | 
						
							| 104 | 101 102 103 | sylc | ⊢ ( ( ( ( ( 𝑅  ∈  𝑉  ∧  𝑅  ≠  ∅  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  ∧  ∃ 𝑥  ∈  ℤ ∀ 𝑦  ∈  ran  𝐹 𝑦  ≤  𝑥 )  ∧  ( 𝑐  ∈  𝑅  ∧  ( 𝐹 ‘ 𝑐 )  ∈  ℕ ) )  ∧  ( 𝑑  ∈  𝑅  ∧  𝑧  ⊆  ( 1 ... ( ( 𝐹 ‘ 𝑐 )  −  1 ) ) ) )  →  𝑧  ≼  ( 1 ... ( ( 𝐹 ‘ 𝑐 )  −  1 ) ) ) | 
						
							| 105 | 101 102 | ssfid | ⊢ ( ( ( ( ( 𝑅  ∈  𝑉  ∧  𝑅  ≠  ∅  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  ∧  ∃ 𝑥  ∈  ℤ ∀ 𝑦  ∈  ran  𝐹 𝑦  ≤  𝑥 )  ∧  ( 𝑐  ∈  𝑅  ∧  ( 𝐹 ‘ 𝑐 )  ∈  ℕ ) )  ∧  ( 𝑑  ∈  𝑅  ∧  𝑧  ⊆  ( 1 ... ( ( 𝐹 ‘ 𝑐 )  −  1 ) ) ) )  →  𝑧  ∈  Fin ) | 
						
							| 106 |  | hashdom | ⊢ ( ( 𝑧  ∈  Fin  ∧  ( 1 ... ( ( 𝐹 ‘ 𝑐 )  −  1 ) )  ∈  Fin )  →  ( ( ♯ ‘ 𝑧 )  ≤  ( ♯ ‘ ( 1 ... ( ( 𝐹 ‘ 𝑐 )  −  1 ) ) )  ↔  𝑧  ≼  ( 1 ... ( ( 𝐹 ‘ 𝑐 )  −  1 ) ) ) ) | 
						
							| 107 | 105 101 106 | syl2anc | ⊢ ( ( ( ( ( 𝑅  ∈  𝑉  ∧  𝑅  ≠  ∅  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  ∧  ∃ 𝑥  ∈  ℤ ∀ 𝑦  ∈  ran  𝐹 𝑦  ≤  𝑥 )  ∧  ( 𝑐  ∈  𝑅  ∧  ( 𝐹 ‘ 𝑐 )  ∈  ℕ ) )  ∧  ( 𝑑  ∈  𝑅  ∧  𝑧  ⊆  ( 1 ... ( ( 𝐹 ‘ 𝑐 )  −  1 ) ) ) )  →  ( ( ♯ ‘ 𝑧 )  ≤  ( ♯ ‘ ( 1 ... ( ( 𝐹 ‘ 𝑐 )  −  1 ) ) )  ↔  𝑧  ≼  ( 1 ... ( ( 𝐹 ‘ 𝑐 )  −  1 ) ) ) ) | 
						
							| 108 | 104 107 | mpbird | ⊢ ( ( ( ( ( 𝑅  ∈  𝑉  ∧  𝑅  ≠  ∅  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  ∧  ∃ 𝑥  ∈  ℤ ∀ 𝑦  ∈  ran  𝐹 𝑦  ≤  𝑥 )  ∧  ( 𝑐  ∈  𝑅  ∧  ( 𝐹 ‘ 𝑐 )  ∈  ℕ ) )  ∧  ( 𝑑  ∈  𝑅  ∧  𝑧  ⊆  ( 1 ... ( ( 𝐹 ‘ 𝑐 )  −  1 ) ) ) )  →  ( ♯ ‘ 𝑧 )  ≤  ( ♯ ‘ ( 1 ... ( ( 𝐹 ‘ 𝑐 )  −  1 ) ) ) ) | 
						
							| 109 | 84 | adantr | ⊢ ( ( ( ( ( 𝑅  ∈  𝑉  ∧  𝑅  ≠  ∅  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  ∧  ∃ 𝑥  ∈  ℤ ∀ 𝑦  ∈  ran  𝐹 𝑦  ≤  𝑥 )  ∧  ( 𝑐  ∈  𝑅  ∧  ( 𝐹 ‘ 𝑐 )  ∈  ℕ ) )  ∧  ( 𝑑  ∈  𝑅  ∧  𝑧  ⊆  ( 1 ... ( ( 𝐹 ‘ 𝑐 )  −  1 ) ) ) )  →  ( ( 𝐹 ‘ 𝑐 )  −  1 )  ∈  ℕ0 ) | 
						
							| 110 |  | hashfz1 | ⊢ ( ( ( 𝐹 ‘ 𝑐 )  −  1 )  ∈  ℕ0  →  ( ♯ ‘ ( 1 ... ( ( 𝐹 ‘ 𝑐 )  −  1 ) ) )  =  ( ( 𝐹 ‘ 𝑐 )  −  1 ) ) | 
						
							| 111 | 109 110 | syl | ⊢ ( ( ( ( ( 𝑅  ∈  𝑉  ∧  𝑅  ≠  ∅  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  ∧  ∃ 𝑥  ∈  ℤ ∀ 𝑦  ∈  ran  𝐹 𝑦  ≤  𝑥 )  ∧  ( 𝑐  ∈  𝑅  ∧  ( 𝐹 ‘ 𝑐 )  ∈  ℕ ) )  ∧  ( 𝑑  ∈  𝑅  ∧  𝑧  ⊆  ( 1 ... ( ( 𝐹 ‘ 𝑐 )  −  1 ) ) ) )  →  ( ♯ ‘ ( 1 ... ( ( 𝐹 ‘ 𝑐 )  −  1 ) ) )  =  ( ( 𝐹 ‘ 𝑐 )  −  1 ) ) | 
						
							| 112 | 108 111 | breqtrd | ⊢ ( ( ( ( ( 𝑅  ∈  𝑉  ∧  𝑅  ≠  ∅  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  ∧  ∃ 𝑥  ∈  ℤ ∀ 𝑦  ∈  ran  𝐹 𝑦  ≤  𝑥 )  ∧  ( 𝑐  ∈  𝑅  ∧  ( 𝐹 ‘ 𝑐 )  ∈  ℕ ) )  ∧  ( 𝑑  ∈  𝑅  ∧  𝑧  ⊆  ( 1 ... ( ( 𝐹 ‘ 𝑐 )  −  1 ) ) ) )  →  ( ♯ ‘ 𝑧 )  ≤  ( ( 𝐹 ‘ 𝑐 )  −  1 ) ) | 
						
							| 113 |  | hashcl | ⊢ ( 𝑧  ∈  Fin  →  ( ♯ ‘ 𝑧 )  ∈  ℕ0 ) | 
						
							| 114 | 105 113 | syl | ⊢ ( ( ( ( ( 𝑅  ∈  𝑉  ∧  𝑅  ≠  ∅  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  ∧  ∃ 𝑥  ∈  ℤ ∀ 𝑦  ∈  ran  𝐹 𝑦  ≤  𝑥 )  ∧  ( 𝑐  ∈  𝑅  ∧  ( 𝐹 ‘ 𝑐 )  ∈  ℕ ) )  ∧  ( 𝑑  ∈  𝑅  ∧  𝑧  ⊆  ( 1 ... ( ( 𝐹 ‘ 𝑐 )  −  1 ) ) ) )  →  ( ♯ ‘ 𝑧 )  ∈  ℕ0 ) | 
						
							| 115 | 5 | ffvelcdmda | ⊢ ( ( ( ( 𝑅  ∈  𝑉  ∧  𝑅  ≠  ∅  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  ∧  ∃ 𝑥  ∈  ℤ ∀ 𝑦  ∈  ran  𝐹 𝑦  ≤  𝑥 )  ∧  𝑐  ∈  𝑅 )  →  ( 𝐹 ‘ 𝑐 )  ∈  ℕ0 ) | 
						
							| 116 | 115 | adantrr | ⊢ ( ( ( ( 𝑅  ∈  𝑉  ∧  𝑅  ≠  ∅  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  ∧  ∃ 𝑥  ∈  ℤ ∀ 𝑦  ∈  ran  𝐹 𝑦  ≤  𝑥 )  ∧  ( 𝑐  ∈  𝑅  ∧  ( 𝐹 ‘ 𝑐 )  ∈  ℕ ) )  →  ( 𝐹 ‘ 𝑐 )  ∈  ℕ0 ) | 
						
							| 117 | 116 | adantr | ⊢ ( ( ( ( ( 𝑅  ∈  𝑉  ∧  𝑅  ≠  ∅  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  ∧  ∃ 𝑥  ∈  ℤ ∀ 𝑦  ∈  ran  𝐹 𝑦  ≤  𝑥 )  ∧  ( 𝑐  ∈  𝑅  ∧  ( 𝐹 ‘ 𝑐 )  ∈  ℕ ) )  ∧  ( 𝑑  ∈  𝑅  ∧  𝑧  ⊆  ( 1 ... ( ( 𝐹 ‘ 𝑐 )  −  1 ) ) ) )  →  ( 𝐹 ‘ 𝑐 )  ∈  ℕ0 ) | 
						
							| 118 |  | nn0ltlem1 | ⊢ ( ( ( ♯ ‘ 𝑧 )  ∈  ℕ0  ∧  ( 𝐹 ‘ 𝑐 )  ∈  ℕ0 )  →  ( ( ♯ ‘ 𝑧 )  <  ( 𝐹 ‘ 𝑐 )  ↔  ( ♯ ‘ 𝑧 )  ≤  ( ( 𝐹 ‘ 𝑐 )  −  1 ) ) ) | 
						
							| 119 | 114 117 118 | syl2anc | ⊢ ( ( ( ( ( 𝑅  ∈  𝑉  ∧  𝑅  ≠  ∅  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  ∧  ∃ 𝑥  ∈  ℤ ∀ 𝑦  ∈  ran  𝐹 𝑦  ≤  𝑥 )  ∧  ( 𝑐  ∈  𝑅  ∧  ( 𝐹 ‘ 𝑐 )  ∈  ℕ ) )  ∧  ( 𝑑  ∈  𝑅  ∧  𝑧  ⊆  ( 1 ... ( ( 𝐹 ‘ 𝑐 )  −  1 ) ) ) )  →  ( ( ♯ ‘ 𝑧 )  <  ( 𝐹 ‘ 𝑐 )  ↔  ( ♯ ‘ 𝑧 )  ≤  ( ( 𝐹 ‘ 𝑐 )  −  1 ) ) ) | 
						
							| 120 | 112 119 | mpbird | ⊢ ( ( ( ( ( 𝑅  ∈  𝑉  ∧  𝑅  ≠  ∅  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  ∧  ∃ 𝑥  ∈  ℤ ∀ 𝑦  ∈  ran  𝐹 𝑦  ≤  𝑥 )  ∧  ( 𝑐  ∈  𝑅  ∧  ( 𝐹 ‘ 𝑐 )  ∈  ℕ ) )  ∧  ( 𝑑  ∈  𝑅  ∧  𝑧  ⊆  ( 1 ... ( ( 𝐹 ‘ 𝑐 )  −  1 ) ) ) )  →  ( ♯ ‘ 𝑧 )  <  ( 𝐹 ‘ 𝑐 ) ) | 
						
							| 121 | 24 85 | fvsn | ⊢ ( { 〈 ∅ ,  𝑐 〉 } ‘ ∅ )  =  𝑐 | 
						
							| 122 |  | f1ofn | ⊢ ( { 〈 ∅ ,  𝑐 〉 } : { ∅ } –1-1-onto→ { 𝑐 }  →  { 〈 ∅ ,  𝑐 〉 }  Fn  { ∅ } ) | 
						
							| 123 |  | elpreima | ⊢ ( { 〈 ∅ ,  𝑐 〉 }  Fn  { ∅ }  →  ( ∅  ∈  ( ◡ { 〈 ∅ ,  𝑐 〉 }  “  { 𝑑 } )  ↔  ( ∅  ∈  { ∅ }  ∧  ( { 〈 ∅ ,  𝑐 〉 } ‘ ∅ )  ∈  { 𝑑 } ) ) ) | 
						
							| 124 | 86 122 123 | mp2b | ⊢ ( ∅  ∈  ( ◡ { 〈 ∅ ,  𝑐 〉 }  “  { 𝑑 } )  ↔  ( ∅  ∈  { ∅ }  ∧  ( { 〈 ∅ ,  𝑐 〉 } ‘ ∅ )  ∈  { 𝑑 } ) ) | 
						
							| 125 | 124 | simprbi | ⊢ ( ∅  ∈  ( ◡ { 〈 ∅ ,  𝑐 〉 }  “  { 𝑑 } )  →  ( { 〈 ∅ ,  𝑐 〉 } ‘ ∅ )  ∈  { 𝑑 } ) | 
						
							| 126 | 121 125 | eqeltrrid | ⊢ ( ∅  ∈  ( ◡ { 〈 ∅ ,  𝑐 〉 }  “  { 𝑑 } )  →  𝑐  ∈  { 𝑑 } ) | 
						
							| 127 |  | elsni | ⊢ ( 𝑐  ∈  { 𝑑 }  →  𝑐  =  𝑑 ) | 
						
							| 128 | 126 127 | syl | ⊢ ( ∅  ∈  ( ◡ { 〈 ∅ ,  𝑐 〉 }  “  { 𝑑 } )  →  𝑐  =  𝑑 ) | 
						
							| 129 | 128 | fveq2d | ⊢ ( ∅  ∈  ( ◡ { 〈 ∅ ,  𝑐 〉 }  “  { 𝑑 } )  →  ( 𝐹 ‘ 𝑐 )  =  ( 𝐹 ‘ 𝑑 ) ) | 
						
							| 130 | 129 | breq2d | ⊢ ( ∅  ∈  ( ◡ { 〈 ∅ ,  𝑐 〉 }  “  { 𝑑 } )  →  ( ( ♯ ‘ 𝑧 )  <  ( 𝐹 ‘ 𝑐 )  ↔  ( ♯ ‘ 𝑧 )  <  ( 𝐹 ‘ 𝑑 ) ) ) | 
						
							| 131 | 120 130 | syl5ibcom | ⊢ ( ( ( ( ( 𝑅  ∈  𝑉  ∧  𝑅  ≠  ∅  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  ∧  ∃ 𝑥  ∈  ℤ ∀ 𝑦  ∈  ran  𝐹 𝑦  ≤  𝑥 )  ∧  ( 𝑐  ∈  𝑅  ∧  ( 𝐹 ‘ 𝑐 )  ∈  ℕ ) )  ∧  ( 𝑑  ∈  𝑅  ∧  𝑧  ⊆  ( 1 ... ( ( 𝐹 ‘ 𝑐 )  −  1 ) ) ) )  →  ( ∅  ∈  ( ◡ { 〈 ∅ ,  𝑐 〉 }  “  { 𝑑 } )  →  ( ♯ ‘ 𝑧 )  <  ( 𝐹 ‘ 𝑑 ) ) ) | 
						
							| 132 | 100 131 | biimtrid | ⊢ ( ( ( ( ( 𝑅  ∈  𝑉  ∧  𝑅  ≠  ∅  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  ∧  ∃ 𝑥  ∈  ℤ ∀ 𝑦  ∈  ran  𝐹 𝑦  ≤  𝑥 )  ∧  ( 𝑐  ∈  𝑅  ∧  ( 𝐹 ‘ 𝑐 )  ∈  ℕ ) )  ∧  ( 𝑑  ∈  𝑅  ∧  𝑧  ⊆  ( 1 ... ( ( 𝐹 ‘ 𝑐 )  −  1 ) ) ) )  →  ( ( 𝑧 ( 𝑎  ∈  V ,  𝑖  ∈  ℕ0  ↦  { 𝑏  ∈  𝒫  𝑎  ∣  ( ♯ ‘ 𝑏 )  =  𝑖 } ) 0 )  ⊆  ( ◡ { 〈 ∅ ,  𝑐 〉 }  “  { 𝑑 } )  →  ( ♯ ‘ 𝑧 )  <  ( 𝐹 ‘ 𝑑 ) ) ) | 
						
							| 133 | 1 80 81 82 84 97 132 | ramlb | ⊢ ( ( ( ( 𝑅  ∈  𝑉  ∧  𝑅  ≠  ∅  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  ∧  ∃ 𝑥  ∈  ℤ ∀ 𝑦  ∈  ran  𝐹 𝑦  ≤  𝑥 )  ∧  ( 𝑐  ∈  𝑅  ∧  ( 𝐹 ‘ 𝑐 )  ∈  ℕ ) )  →  ( ( 𝐹 ‘ 𝑐 )  −  1 )  <  ( 0  Ramsey  𝐹 ) ) | 
						
							| 134 |  | ramubcl | ⊢ ( ( ( 0  ∈  ℕ0  ∧  𝑅  ∈  𝑉  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  ∧  ( sup ( ran  𝐹 ,  ℝ ,   <  )  ∈  ℕ0  ∧  ( 0  Ramsey  𝐹 )  ≤  sup ( ran  𝐹 ,  ℝ ,   <  ) ) )  →  ( 0  Ramsey  𝐹 )  ∈  ℕ0 ) | 
						
							| 135 | 3 4 5 18 75 134 | syl32anc | ⊢ ( ( ( 𝑅  ∈  𝑉  ∧  𝑅  ≠  ∅  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  ∧  ∃ 𝑥  ∈  ℤ ∀ 𝑦  ∈  ran  𝐹 𝑦  ≤  𝑥 )  →  ( 0  Ramsey  𝐹 )  ∈  ℕ0 ) | 
						
							| 136 | 135 | adantr | ⊢ ( ( ( ( 𝑅  ∈  𝑉  ∧  𝑅  ≠  ∅  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  ∧  ∃ 𝑥  ∈  ℤ ∀ 𝑦  ∈  ran  𝐹 𝑦  ≤  𝑥 )  ∧  ( 𝑐  ∈  𝑅  ∧  ( 𝐹 ‘ 𝑐 )  ∈  ℕ ) )  →  ( 0  Ramsey  𝐹 )  ∈  ℕ0 ) | 
						
							| 137 |  | nn0lem1lt | ⊢ ( ( ( 𝐹 ‘ 𝑐 )  ∈  ℕ0  ∧  ( 0  Ramsey  𝐹 )  ∈  ℕ0 )  →  ( ( 𝐹 ‘ 𝑐 )  ≤  ( 0  Ramsey  𝐹 )  ↔  ( ( 𝐹 ‘ 𝑐 )  −  1 )  <  ( 0  Ramsey  𝐹 ) ) ) | 
						
							| 138 | 116 136 137 | syl2anc | ⊢ ( ( ( ( 𝑅  ∈  𝑉  ∧  𝑅  ≠  ∅  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  ∧  ∃ 𝑥  ∈  ℤ ∀ 𝑦  ∈  ran  𝐹 𝑦  ≤  𝑥 )  ∧  ( 𝑐  ∈  𝑅  ∧  ( 𝐹 ‘ 𝑐 )  ∈  ℕ ) )  →  ( ( 𝐹 ‘ 𝑐 )  ≤  ( 0  Ramsey  𝐹 )  ↔  ( ( 𝐹 ‘ 𝑐 )  −  1 )  <  ( 0  Ramsey  𝐹 ) ) ) | 
						
							| 139 | 133 138 | mpbird | ⊢ ( ( ( ( 𝑅  ∈  𝑉  ∧  𝑅  ≠  ∅  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  ∧  ∃ 𝑥  ∈  ℤ ∀ 𝑦  ∈  ran  𝐹 𝑦  ≤  𝑥 )  ∧  ( 𝑐  ∈  𝑅  ∧  ( 𝐹 ‘ 𝑐 )  ∈  ℕ ) )  →  ( 𝐹 ‘ 𝑐 )  ≤  ( 0  Ramsey  𝐹 ) ) | 
						
							| 140 | 139 | expr | ⊢ ( ( ( ( 𝑅  ∈  𝑉  ∧  𝑅  ≠  ∅  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  ∧  ∃ 𝑥  ∈  ℤ ∀ 𝑦  ∈  ran  𝐹 𝑦  ≤  𝑥 )  ∧  𝑐  ∈  𝑅 )  →  ( ( 𝐹 ‘ 𝑐 )  ∈  ℕ  →  ( 𝐹 ‘ 𝑐 )  ≤  ( 0  Ramsey  𝐹 ) ) ) | 
						
							| 141 | 135 | adantr | ⊢ ( ( ( ( 𝑅  ∈  𝑉  ∧  𝑅  ≠  ∅  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  ∧  ∃ 𝑥  ∈  ℤ ∀ 𝑦  ∈  ran  𝐹 𝑦  ≤  𝑥 )  ∧  𝑐  ∈  𝑅 )  →  ( 0  Ramsey  𝐹 )  ∈  ℕ0 ) | 
						
							| 142 | 141 | nn0ge0d | ⊢ ( ( ( ( 𝑅  ∈  𝑉  ∧  𝑅  ≠  ∅  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  ∧  ∃ 𝑥  ∈  ℤ ∀ 𝑦  ∈  ran  𝐹 𝑦  ≤  𝑥 )  ∧  𝑐  ∈  𝑅 )  →  0  ≤  ( 0  Ramsey  𝐹 ) ) | 
						
							| 143 |  | breq1 | ⊢ ( ( 𝐹 ‘ 𝑐 )  =  0  →  ( ( 𝐹 ‘ 𝑐 )  ≤  ( 0  Ramsey  𝐹 )  ↔  0  ≤  ( 0  Ramsey  𝐹 ) ) ) | 
						
							| 144 | 142 143 | syl5ibrcom | ⊢ ( ( ( ( 𝑅  ∈  𝑉  ∧  𝑅  ≠  ∅  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  ∧  ∃ 𝑥  ∈  ℤ ∀ 𝑦  ∈  ran  𝐹 𝑦  ≤  𝑥 )  ∧  𝑐  ∈  𝑅 )  →  ( ( 𝐹 ‘ 𝑐 )  =  0  →  ( 𝐹 ‘ 𝑐 )  ≤  ( 0  Ramsey  𝐹 ) ) ) | 
						
							| 145 |  | elnn0 | ⊢ ( ( 𝐹 ‘ 𝑐 )  ∈  ℕ0  ↔  ( ( 𝐹 ‘ 𝑐 )  ∈  ℕ  ∨  ( 𝐹 ‘ 𝑐 )  =  0 ) ) | 
						
							| 146 | 115 145 | sylib | ⊢ ( ( ( ( 𝑅  ∈  𝑉  ∧  𝑅  ≠  ∅  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  ∧  ∃ 𝑥  ∈  ℤ ∀ 𝑦  ∈  ran  𝐹 𝑦  ≤  𝑥 )  ∧  𝑐  ∈  𝑅 )  →  ( ( 𝐹 ‘ 𝑐 )  ∈  ℕ  ∨  ( 𝐹 ‘ 𝑐 )  =  0 ) ) | 
						
							| 147 | 140 144 146 | mpjaod | ⊢ ( ( ( ( 𝑅  ∈  𝑉  ∧  𝑅  ≠  ∅  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  ∧  ∃ 𝑥  ∈  ℤ ∀ 𝑦  ∈  ran  𝐹 𝑦  ≤  𝑥 )  ∧  𝑐  ∈  𝑅 )  →  ( 𝐹 ‘ 𝑐 )  ≤  ( 0  Ramsey  𝐹 ) ) | 
						
							| 148 |  | breq1 | ⊢ ( ( 𝐹 ‘ 𝑐 )  =  sup ( ran  𝐹 ,  ℝ ,   <  )  →  ( ( 𝐹 ‘ 𝑐 )  ≤  ( 0  Ramsey  𝐹 )  ↔  sup ( ran  𝐹 ,  ℝ ,   <  )  ≤  ( 0  Ramsey  𝐹 ) ) ) | 
						
							| 149 | 147 148 | syl5ibcom | ⊢ ( ( ( ( 𝑅  ∈  𝑉  ∧  𝑅  ≠  ∅  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  ∧  ∃ 𝑥  ∈  ℤ ∀ 𝑦  ∈  ran  𝐹 𝑦  ≤  𝑥 )  ∧  𝑐  ∈  𝑅 )  →  ( ( 𝐹 ‘ 𝑐 )  =  sup ( ran  𝐹 ,  ℝ ,   <  )  →  sup ( ran  𝐹 ,  ℝ ,   <  )  ≤  ( 0  Ramsey  𝐹 ) ) ) | 
						
							| 150 | 149 | rexlimdva | ⊢ ( ( ( 𝑅  ∈  𝑉  ∧  𝑅  ≠  ∅  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  ∧  ∃ 𝑥  ∈  ℤ ∀ 𝑦  ∈  ran  𝐹 𝑦  ≤  𝑥 )  →  ( ∃ 𝑐  ∈  𝑅 ( 𝐹 ‘ 𝑐 )  =  sup ( ran  𝐹 ,  ℝ ,   <  )  →  sup ( ran  𝐹 ,  ℝ ,   <  )  ≤  ( 0  Ramsey  𝐹 ) ) ) | 
						
							| 151 | 79 150 | mpd | ⊢ ( ( ( 𝑅  ∈  𝑉  ∧  𝑅  ≠  ∅  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  ∧  ∃ 𝑥  ∈  ℤ ∀ 𝑦  ∈  ran  𝐹 𝑦  ≤  𝑥 )  →  sup ( ran  𝐹 ,  ℝ ,   <  )  ≤  ( 0  Ramsey  𝐹 ) ) | 
						
							| 152 | 135 | nn0red | ⊢ ( ( ( 𝑅  ∈  𝑉  ∧  𝑅  ≠  ∅  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  ∧  ∃ 𝑥  ∈  ℤ ∀ 𝑦  ∈  ran  𝐹 𝑦  ≤  𝑥 )  →  ( 0  Ramsey  𝐹 )  ∈  ℝ ) | 
						
							| 153 | 152 35 | letri3d | ⊢ ( ( ( 𝑅  ∈  𝑉  ∧  𝑅  ≠  ∅  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  ∧  ∃ 𝑥  ∈  ℤ ∀ 𝑦  ∈  ran  𝐹 𝑦  ≤  𝑥 )  →  ( ( 0  Ramsey  𝐹 )  =  sup ( ran  𝐹 ,  ℝ ,   <  )  ↔  ( ( 0  Ramsey  𝐹 )  ≤  sup ( ran  𝐹 ,  ℝ ,   <  )  ∧  sup ( ran  𝐹 ,  ℝ ,   <  )  ≤  ( 0  Ramsey  𝐹 ) ) ) ) | 
						
							| 154 | 75 151 153 | mpbir2and | ⊢ ( ( ( 𝑅  ∈  𝑉  ∧  𝑅  ≠  ∅  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  ∧  ∃ 𝑥  ∈  ℤ ∀ 𝑦  ∈  ran  𝐹 𝑦  ≤  𝑥 )  →  ( 0  Ramsey  𝐹 )  =  sup ( ran  𝐹 ,  ℝ ,   <  ) ) |