| Step | Hyp | Ref | Expression | 
						
							| 1 |  | frn | ⊢ ( 𝐹 : 𝑅 ⟶ ℕ0  →  ran  𝐹  ⊆  ℕ0 ) | 
						
							| 2 | 1 | 3ad2ant3 | ⊢ ( ( 𝑅  ∈  Fin  ∧  𝑅  ≠  ∅  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  →  ran  𝐹  ⊆  ℕ0 ) | 
						
							| 3 |  | nn0ssz | ⊢ ℕ0  ⊆  ℤ | 
						
							| 4 | 2 3 | sstrdi | ⊢ ( ( 𝑅  ∈  Fin  ∧  𝑅  ≠  ∅  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  →  ran  𝐹  ⊆  ℤ ) | 
						
							| 5 |  | nn0ssre | ⊢ ℕ0  ⊆  ℝ | 
						
							| 6 | 2 5 | sstrdi | ⊢ ( ( 𝑅  ∈  Fin  ∧  𝑅  ≠  ∅  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  →  ran  𝐹  ⊆  ℝ ) | 
						
							| 7 |  | simp1 | ⊢ ( ( 𝑅  ∈  Fin  ∧  𝑅  ≠  ∅  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  →  𝑅  ∈  Fin ) | 
						
							| 8 |  | ffn | ⊢ ( 𝐹 : 𝑅 ⟶ ℕ0  →  𝐹  Fn  𝑅 ) | 
						
							| 9 | 8 | 3ad2ant3 | ⊢ ( ( 𝑅  ∈  Fin  ∧  𝑅  ≠  ∅  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  →  𝐹  Fn  𝑅 ) | 
						
							| 10 |  | dffn4 | ⊢ ( 𝐹  Fn  𝑅  ↔  𝐹 : 𝑅 –onto→ ran  𝐹 ) | 
						
							| 11 | 9 10 | sylib | ⊢ ( ( 𝑅  ∈  Fin  ∧  𝑅  ≠  ∅  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  →  𝐹 : 𝑅 –onto→ ran  𝐹 ) | 
						
							| 12 |  | fofi | ⊢ ( ( 𝑅  ∈  Fin  ∧  𝐹 : 𝑅 –onto→ ran  𝐹 )  →  ran  𝐹  ∈  Fin ) | 
						
							| 13 | 7 11 12 | syl2anc | ⊢ ( ( 𝑅  ∈  Fin  ∧  𝑅  ≠  ∅  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  →  ran  𝐹  ∈  Fin ) | 
						
							| 14 |  | fdm | ⊢ ( 𝐹 : 𝑅 ⟶ ℕ0  →  dom  𝐹  =  𝑅 ) | 
						
							| 15 | 14 | 3ad2ant3 | ⊢ ( ( 𝑅  ∈  Fin  ∧  𝑅  ≠  ∅  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  →  dom  𝐹  =  𝑅 ) | 
						
							| 16 |  | simp2 | ⊢ ( ( 𝑅  ∈  Fin  ∧  𝑅  ≠  ∅  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  →  𝑅  ≠  ∅ ) | 
						
							| 17 | 15 16 | eqnetrd | ⊢ ( ( 𝑅  ∈  Fin  ∧  𝑅  ≠  ∅  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  →  dom  𝐹  ≠  ∅ ) | 
						
							| 18 |  | dm0rn0 | ⊢ ( dom  𝐹  =  ∅  ↔  ran  𝐹  =  ∅ ) | 
						
							| 19 | 18 | necon3bii | ⊢ ( dom  𝐹  ≠  ∅  ↔  ran  𝐹  ≠  ∅ ) | 
						
							| 20 | 17 19 | sylib | ⊢ ( ( 𝑅  ∈  Fin  ∧  𝑅  ≠  ∅  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  →  ran  𝐹  ≠  ∅ ) | 
						
							| 21 |  | fimaxre | ⊢ ( ( ran  𝐹  ⊆  ℝ  ∧  ran  𝐹  ∈  Fin  ∧  ran  𝐹  ≠  ∅ )  →  ∃ 𝑥  ∈  ran  𝐹 ∀ 𝑦  ∈  ran  𝐹 𝑦  ≤  𝑥 ) | 
						
							| 22 | 6 13 20 21 | syl3anc | ⊢ ( ( 𝑅  ∈  Fin  ∧  𝑅  ≠  ∅  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  →  ∃ 𝑥  ∈  ran  𝐹 ∀ 𝑦  ∈  ran  𝐹 𝑦  ≤  𝑥 ) | 
						
							| 23 |  | ssrexv | ⊢ ( ran  𝐹  ⊆  ℤ  →  ( ∃ 𝑥  ∈  ran  𝐹 ∀ 𝑦  ∈  ran  𝐹 𝑦  ≤  𝑥  →  ∃ 𝑥  ∈  ℤ ∀ 𝑦  ∈  ran  𝐹 𝑦  ≤  𝑥 ) ) | 
						
							| 24 | 4 22 23 | sylc | ⊢ ( ( 𝑅  ∈  Fin  ∧  𝑅  ≠  ∅  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  →  ∃ 𝑥  ∈  ℤ ∀ 𝑦  ∈  ran  𝐹 𝑦  ≤  𝑥 ) | 
						
							| 25 |  | 0ram | ⊢ ( ( ( 𝑅  ∈  Fin  ∧  𝑅  ≠  ∅  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  ∧  ∃ 𝑥  ∈  ℤ ∀ 𝑦  ∈  ran  𝐹 𝑦  ≤  𝑥 )  →  ( 0  Ramsey  𝐹 )  =  sup ( ran  𝐹 ,  ℝ ,   <  ) ) | 
						
							| 26 | 24 25 | mpdan | ⊢ ( ( 𝑅  ∈  Fin  ∧  𝑅  ≠  ∅  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  →  ( 0  Ramsey  𝐹 )  =  sup ( ran  𝐹 ,  ℝ ,   <  ) ) |