| Step | Hyp | Ref | Expression | 
						
							| 1 |  | frn |  |-  ( F : R --> NN0 -> ran F C_ NN0 ) | 
						
							| 2 | 1 | 3ad2ant3 |  |-  ( ( R e. Fin /\ R =/= (/) /\ F : R --> NN0 ) -> ran F C_ NN0 ) | 
						
							| 3 |  | nn0ssz |  |-  NN0 C_ ZZ | 
						
							| 4 | 2 3 | sstrdi |  |-  ( ( R e. Fin /\ R =/= (/) /\ F : R --> NN0 ) -> ran F C_ ZZ ) | 
						
							| 5 |  | nn0ssre |  |-  NN0 C_ RR | 
						
							| 6 | 2 5 | sstrdi |  |-  ( ( R e. Fin /\ R =/= (/) /\ F : R --> NN0 ) -> ran F C_ RR ) | 
						
							| 7 |  | simp1 |  |-  ( ( R e. Fin /\ R =/= (/) /\ F : R --> NN0 ) -> R e. Fin ) | 
						
							| 8 |  | ffn |  |-  ( F : R --> NN0 -> F Fn R ) | 
						
							| 9 | 8 | 3ad2ant3 |  |-  ( ( R e. Fin /\ R =/= (/) /\ F : R --> NN0 ) -> F Fn R ) | 
						
							| 10 |  | dffn4 |  |-  ( F Fn R <-> F : R -onto-> ran F ) | 
						
							| 11 | 9 10 | sylib |  |-  ( ( R e. Fin /\ R =/= (/) /\ F : R --> NN0 ) -> F : R -onto-> ran F ) | 
						
							| 12 |  | fofi |  |-  ( ( R e. Fin /\ F : R -onto-> ran F ) -> ran F e. Fin ) | 
						
							| 13 | 7 11 12 | syl2anc |  |-  ( ( R e. Fin /\ R =/= (/) /\ F : R --> NN0 ) -> ran F e. Fin ) | 
						
							| 14 |  | fdm |  |-  ( F : R --> NN0 -> dom F = R ) | 
						
							| 15 | 14 | 3ad2ant3 |  |-  ( ( R e. Fin /\ R =/= (/) /\ F : R --> NN0 ) -> dom F = R ) | 
						
							| 16 |  | simp2 |  |-  ( ( R e. Fin /\ R =/= (/) /\ F : R --> NN0 ) -> R =/= (/) ) | 
						
							| 17 | 15 16 | eqnetrd |  |-  ( ( R e. Fin /\ R =/= (/) /\ F : R --> NN0 ) -> dom F =/= (/) ) | 
						
							| 18 |  | dm0rn0 |  |-  ( dom F = (/) <-> ran F = (/) ) | 
						
							| 19 | 18 | necon3bii |  |-  ( dom F =/= (/) <-> ran F =/= (/) ) | 
						
							| 20 | 17 19 | sylib |  |-  ( ( R e. Fin /\ R =/= (/) /\ F : R --> NN0 ) -> ran F =/= (/) ) | 
						
							| 21 |  | fimaxre |  |-  ( ( ran F C_ RR /\ ran F e. Fin /\ ran F =/= (/) ) -> E. x e. ran F A. y e. ran F y <_ x ) | 
						
							| 22 | 6 13 20 21 | syl3anc |  |-  ( ( R e. Fin /\ R =/= (/) /\ F : R --> NN0 ) -> E. x e. ran F A. y e. ran F y <_ x ) | 
						
							| 23 |  | ssrexv |  |-  ( ran F C_ ZZ -> ( E. x e. ran F A. y e. ran F y <_ x -> E. x e. ZZ A. y e. ran F y <_ x ) ) | 
						
							| 24 | 4 22 23 | sylc |  |-  ( ( R e. Fin /\ R =/= (/) /\ F : R --> NN0 ) -> E. x e. ZZ A. y e. ran F y <_ x ) | 
						
							| 25 |  | 0ram |  |-  ( ( ( R e. Fin /\ R =/= (/) /\ F : R --> NN0 ) /\ E. x e. ZZ A. y e. ran F y <_ x ) -> ( 0 Ramsey F ) = sup ( ran F , RR , < ) ) | 
						
							| 26 | 24 25 | mpdan |  |-  ( ( R e. Fin /\ R =/= (/) /\ F : R --> NN0 ) -> ( 0 Ramsey F ) = sup ( ran F , RR , < ) ) |