| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
|- ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) = ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) |
| 2 |
|
id |
|- ( M e. NN0 -> M e. NN0 ) |
| 3 |
|
0ex |
|- (/) e. _V |
| 4 |
3
|
a1i |
|- ( M e. NN0 -> (/) e. _V ) |
| 5 |
|
f0 |
|- (/) : (/) --> NN0 |
| 6 |
5
|
a1i |
|- ( M e. NN0 -> (/) : (/) --> NN0 ) |
| 7 |
|
f00 |
|- ( f : ( s ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) M ) --> (/) <-> ( f = (/) /\ ( s ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) M ) = (/) ) ) |
| 8 |
|
vex |
|- s e. _V |
| 9 |
|
simpl |
|- ( ( M e. NN0 /\ M <_ ( # ` s ) ) -> M e. NN0 ) |
| 10 |
1
|
hashbcval |
|- ( ( s e. _V /\ M e. NN0 ) -> ( s ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) M ) = { x e. ~P s | ( # ` x ) = M } ) |
| 11 |
8 9 10
|
sylancr |
|- ( ( M e. NN0 /\ M <_ ( # ` s ) ) -> ( s ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) M ) = { x e. ~P s | ( # ` x ) = M } ) |
| 12 |
|
hashfz1 |
|- ( M e. NN0 -> ( # ` ( 1 ... M ) ) = M ) |
| 13 |
12
|
breq1d |
|- ( M e. NN0 -> ( ( # ` ( 1 ... M ) ) <_ ( # ` s ) <-> M <_ ( # ` s ) ) ) |
| 14 |
13
|
biimpar |
|- ( ( M e. NN0 /\ M <_ ( # ` s ) ) -> ( # ` ( 1 ... M ) ) <_ ( # ` s ) ) |
| 15 |
|
fzfid |
|- ( ( M e. NN0 /\ M <_ ( # ` s ) ) -> ( 1 ... M ) e. Fin ) |
| 16 |
|
hashdom |
|- ( ( ( 1 ... M ) e. Fin /\ s e. _V ) -> ( ( # ` ( 1 ... M ) ) <_ ( # ` s ) <-> ( 1 ... M ) ~<_ s ) ) |
| 17 |
15 8 16
|
sylancl |
|- ( ( M e. NN0 /\ M <_ ( # ` s ) ) -> ( ( # ` ( 1 ... M ) ) <_ ( # ` s ) <-> ( 1 ... M ) ~<_ s ) ) |
| 18 |
14 17
|
mpbid |
|- ( ( M e. NN0 /\ M <_ ( # ` s ) ) -> ( 1 ... M ) ~<_ s ) |
| 19 |
8
|
domen |
|- ( ( 1 ... M ) ~<_ s <-> E. x ( ( 1 ... M ) ~~ x /\ x C_ s ) ) |
| 20 |
18 19
|
sylib |
|- ( ( M e. NN0 /\ M <_ ( # ` s ) ) -> E. x ( ( 1 ... M ) ~~ x /\ x C_ s ) ) |
| 21 |
|
simprr |
|- ( ( ( M e. NN0 /\ M <_ ( # ` s ) ) /\ ( ( 1 ... M ) ~~ x /\ x C_ s ) ) -> x C_ s ) |
| 22 |
|
velpw |
|- ( x e. ~P s <-> x C_ s ) |
| 23 |
21 22
|
sylibr |
|- ( ( ( M e. NN0 /\ M <_ ( # ` s ) ) /\ ( ( 1 ... M ) ~~ x /\ x C_ s ) ) -> x e. ~P s ) |
| 24 |
|
hasheni |
|- ( ( 1 ... M ) ~~ x -> ( # ` ( 1 ... M ) ) = ( # ` x ) ) |
| 25 |
24
|
ad2antrl |
|- ( ( ( M e. NN0 /\ M <_ ( # ` s ) ) /\ ( ( 1 ... M ) ~~ x /\ x C_ s ) ) -> ( # ` ( 1 ... M ) ) = ( # ` x ) ) |
| 26 |
12
|
ad2antrr |
|- ( ( ( M e. NN0 /\ M <_ ( # ` s ) ) /\ ( ( 1 ... M ) ~~ x /\ x C_ s ) ) -> ( # ` ( 1 ... M ) ) = M ) |
| 27 |
25 26
|
eqtr3d |
|- ( ( ( M e. NN0 /\ M <_ ( # ` s ) ) /\ ( ( 1 ... M ) ~~ x /\ x C_ s ) ) -> ( # ` x ) = M ) |
| 28 |
23 27
|
jca |
|- ( ( ( M e. NN0 /\ M <_ ( # ` s ) ) /\ ( ( 1 ... M ) ~~ x /\ x C_ s ) ) -> ( x e. ~P s /\ ( # ` x ) = M ) ) |
| 29 |
28
|
ex |
|- ( ( M e. NN0 /\ M <_ ( # ` s ) ) -> ( ( ( 1 ... M ) ~~ x /\ x C_ s ) -> ( x e. ~P s /\ ( # ` x ) = M ) ) ) |
| 30 |
29
|
eximdv |
|- ( ( M e. NN0 /\ M <_ ( # ` s ) ) -> ( E. x ( ( 1 ... M ) ~~ x /\ x C_ s ) -> E. x ( x e. ~P s /\ ( # ` x ) = M ) ) ) |
| 31 |
20 30
|
mpd |
|- ( ( M e. NN0 /\ M <_ ( # ` s ) ) -> E. x ( x e. ~P s /\ ( # ` x ) = M ) ) |
| 32 |
|
df-rex |
|- ( E. x e. ~P s ( # ` x ) = M <-> E. x ( x e. ~P s /\ ( # ` x ) = M ) ) |
| 33 |
31 32
|
sylibr |
|- ( ( M e. NN0 /\ M <_ ( # ` s ) ) -> E. x e. ~P s ( # ` x ) = M ) |
| 34 |
|
rabn0 |
|- ( { x e. ~P s | ( # ` x ) = M } =/= (/) <-> E. x e. ~P s ( # ` x ) = M ) |
| 35 |
33 34
|
sylibr |
|- ( ( M e. NN0 /\ M <_ ( # ` s ) ) -> { x e. ~P s | ( # ` x ) = M } =/= (/) ) |
| 36 |
11 35
|
eqnetrd |
|- ( ( M e. NN0 /\ M <_ ( # ` s ) ) -> ( s ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) M ) =/= (/) ) |
| 37 |
36
|
neneqd |
|- ( ( M e. NN0 /\ M <_ ( # ` s ) ) -> -. ( s ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) M ) = (/) ) |
| 38 |
37
|
pm2.21d |
|- ( ( M e. NN0 /\ M <_ ( # ` s ) ) -> ( ( s ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) M ) = (/) -> E. c e. (/) E. x e. ~P s ( ( (/) ` c ) <_ ( # ` x ) /\ ( x ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) M ) C_ ( `' f " { c } ) ) ) ) |
| 39 |
38
|
adantld |
|- ( ( M e. NN0 /\ M <_ ( # ` s ) ) -> ( ( f = (/) /\ ( s ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) M ) = (/) ) -> E. c e. (/) E. x e. ~P s ( ( (/) ` c ) <_ ( # ` x ) /\ ( x ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) M ) C_ ( `' f " { c } ) ) ) ) |
| 40 |
7 39
|
biimtrid |
|- ( ( M e. NN0 /\ M <_ ( # ` s ) ) -> ( f : ( s ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) M ) --> (/) -> E. c e. (/) E. x e. ~P s ( ( (/) ` c ) <_ ( # ` x ) /\ ( x ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) M ) C_ ( `' f " { c } ) ) ) ) |
| 41 |
40
|
impr |
|- ( ( M e. NN0 /\ ( M <_ ( # ` s ) /\ f : ( s ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) M ) --> (/) ) ) -> E. c e. (/) E. x e. ~P s ( ( (/) ` c ) <_ ( # ` x ) /\ ( x ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) M ) C_ ( `' f " { c } ) ) ) |
| 42 |
1 2 4 6 2 41
|
ramub |
|- ( M e. NN0 -> ( M Ramsey (/) ) <_ M ) |
| 43 |
|
nnnn0 |
|- ( M e. NN -> M e. NN0 ) |
| 44 |
3
|
a1i |
|- ( M e. NN -> (/) e. _V ) |
| 45 |
5
|
a1i |
|- ( M e. NN -> (/) : (/) --> NN0 ) |
| 46 |
|
nnm1nn0 |
|- ( M e. NN -> ( M - 1 ) e. NN0 ) |
| 47 |
|
f0 |
|- (/) : (/) --> (/) |
| 48 |
|
fzfid |
|- ( M e. NN -> ( 1 ... ( M - 1 ) ) e. Fin ) |
| 49 |
1
|
hashbc2 |
|- ( ( ( 1 ... ( M - 1 ) ) e. Fin /\ M e. NN0 ) -> ( # ` ( ( 1 ... ( M - 1 ) ) ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) M ) ) = ( ( # ` ( 1 ... ( M - 1 ) ) ) _C M ) ) |
| 50 |
48 43 49
|
syl2anc |
|- ( M e. NN -> ( # ` ( ( 1 ... ( M - 1 ) ) ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) M ) ) = ( ( # ` ( 1 ... ( M - 1 ) ) ) _C M ) ) |
| 51 |
|
hashfz1 |
|- ( ( M - 1 ) e. NN0 -> ( # ` ( 1 ... ( M - 1 ) ) ) = ( M - 1 ) ) |
| 52 |
46 51
|
syl |
|- ( M e. NN -> ( # ` ( 1 ... ( M - 1 ) ) ) = ( M - 1 ) ) |
| 53 |
52
|
oveq1d |
|- ( M e. NN -> ( ( # ` ( 1 ... ( M - 1 ) ) ) _C M ) = ( ( M - 1 ) _C M ) ) |
| 54 |
|
nnz |
|- ( M e. NN -> M e. ZZ ) |
| 55 |
|
nnre |
|- ( M e. NN -> M e. RR ) |
| 56 |
55
|
ltm1d |
|- ( M e. NN -> ( M - 1 ) < M ) |
| 57 |
56
|
olcd |
|- ( M e. NN -> ( M < 0 \/ ( M - 1 ) < M ) ) |
| 58 |
|
bcval4 |
|- ( ( ( M - 1 ) e. NN0 /\ M e. ZZ /\ ( M < 0 \/ ( M - 1 ) < M ) ) -> ( ( M - 1 ) _C M ) = 0 ) |
| 59 |
46 54 57 58
|
syl3anc |
|- ( M e. NN -> ( ( M - 1 ) _C M ) = 0 ) |
| 60 |
50 53 59
|
3eqtrd |
|- ( M e. NN -> ( # ` ( ( 1 ... ( M - 1 ) ) ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) M ) ) = 0 ) |
| 61 |
|
ovex |
|- ( ( 1 ... ( M - 1 ) ) ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) M ) e. _V |
| 62 |
|
hasheq0 |
|- ( ( ( 1 ... ( M - 1 ) ) ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) M ) e. _V -> ( ( # ` ( ( 1 ... ( M - 1 ) ) ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) M ) ) = 0 <-> ( ( 1 ... ( M - 1 ) ) ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) M ) = (/) ) ) |
| 63 |
61 62
|
ax-mp |
|- ( ( # ` ( ( 1 ... ( M - 1 ) ) ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) M ) ) = 0 <-> ( ( 1 ... ( M - 1 ) ) ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) M ) = (/) ) |
| 64 |
60 63
|
sylib |
|- ( M e. NN -> ( ( 1 ... ( M - 1 ) ) ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) M ) = (/) ) |
| 65 |
64
|
feq2d |
|- ( M e. NN -> ( (/) : ( ( 1 ... ( M - 1 ) ) ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) M ) --> (/) <-> (/) : (/) --> (/) ) ) |
| 66 |
47 65
|
mpbiri |
|- ( M e. NN -> (/) : ( ( 1 ... ( M - 1 ) ) ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) M ) --> (/) ) |
| 67 |
|
noel |
|- -. c e. (/) |
| 68 |
67
|
pm2.21i |
|- ( c e. (/) -> ( ( x ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) M ) C_ ( `' (/) " { c } ) -> ( # ` x ) < ( (/) ` c ) ) ) |
| 69 |
68
|
ad2antrl |
|- ( ( M e. NN /\ ( c e. (/) /\ x C_ ( 1 ... ( M - 1 ) ) ) ) -> ( ( x ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) M ) C_ ( `' (/) " { c } ) -> ( # ` x ) < ( (/) ` c ) ) ) |
| 70 |
1 43 44 45 46 66 69
|
ramlb |
|- ( M e. NN -> ( M - 1 ) < ( M Ramsey (/) ) ) |
| 71 |
|
ramubcl |
|- ( ( ( M e. NN0 /\ (/) e. _V /\ (/) : (/) --> NN0 ) /\ ( M e. NN0 /\ ( M Ramsey (/) ) <_ M ) ) -> ( M Ramsey (/) ) e. NN0 ) |
| 72 |
2 4 6 2 42 71
|
syl32anc |
|- ( M e. NN0 -> ( M Ramsey (/) ) e. NN0 ) |
| 73 |
|
nn0lem1lt |
|- ( ( M e. NN0 /\ ( M Ramsey (/) ) e. NN0 ) -> ( M <_ ( M Ramsey (/) ) <-> ( M - 1 ) < ( M Ramsey (/) ) ) ) |
| 74 |
43 72 73
|
syl2anc2 |
|- ( M e. NN -> ( M <_ ( M Ramsey (/) ) <-> ( M - 1 ) < ( M Ramsey (/) ) ) ) |
| 75 |
70 74
|
mpbird |
|- ( M e. NN -> M <_ ( M Ramsey (/) ) ) |
| 76 |
75
|
a1i |
|- ( M e. NN0 -> ( M e. NN -> M <_ ( M Ramsey (/) ) ) ) |
| 77 |
72
|
nn0ge0d |
|- ( M e. NN0 -> 0 <_ ( M Ramsey (/) ) ) |
| 78 |
|
breq1 |
|- ( M = 0 -> ( M <_ ( M Ramsey (/) ) <-> 0 <_ ( M Ramsey (/) ) ) ) |
| 79 |
77 78
|
syl5ibrcom |
|- ( M e. NN0 -> ( M = 0 -> M <_ ( M Ramsey (/) ) ) ) |
| 80 |
|
elnn0 |
|- ( M e. NN0 <-> ( M e. NN \/ M = 0 ) ) |
| 81 |
80
|
biimpi |
|- ( M e. NN0 -> ( M e. NN \/ M = 0 ) ) |
| 82 |
76 79 81
|
mpjaod |
|- ( M e. NN0 -> M <_ ( M Ramsey (/) ) ) |
| 83 |
72
|
nn0red |
|- ( M e. NN0 -> ( M Ramsey (/) ) e. RR ) |
| 84 |
|
nn0re |
|- ( M e. NN0 -> M e. RR ) |
| 85 |
83 84
|
letri3d |
|- ( M e. NN0 -> ( ( M Ramsey (/) ) = M <-> ( ( M Ramsey (/) ) <_ M /\ M <_ ( M Ramsey (/) ) ) ) ) |
| 86 |
42 82 85
|
mpbir2and |
|- ( M e. NN0 -> ( M Ramsey (/) ) = M ) |