| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ramlb.c |  |-  C = ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) | 
						
							| 2 |  | ramlb.m |  |-  ( ph -> M e. NN0 ) | 
						
							| 3 |  | ramlb.r |  |-  ( ph -> R e. V ) | 
						
							| 4 |  | ramlb.f |  |-  ( ph -> F : R --> NN0 ) | 
						
							| 5 |  | ramlb.s |  |-  ( ph -> N e. NN0 ) | 
						
							| 6 |  | ramlb.g |  |-  ( ph -> G : ( ( 1 ... N ) C M ) --> R ) | 
						
							| 7 |  | ramlb.i |  |-  ( ( ph /\ ( c e. R /\ x C_ ( 1 ... N ) ) ) -> ( ( x C M ) C_ ( `' G " { c } ) -> ( # ` x ) < ( F ` c ) ) ) | 
						
							| 8 | 2 | adantr |  |-  ( ( ph /\ ( M Ramsey F ) <_ N ) -> M e. NN0 ) | 
						
							| 9 | 3 | adantr |  |-  ( ( ph /\ ( M Ramsey F ) <_ N ) -> R e. V ) | 
						
							| 10 | 4 | adantr |  |-  ( ( ph /\ ( M Ramsey F ) <_ N ) -> F : R --> NN0 ) | 
						
							| 11 | 5 | adantr |  |-  ( ( ph /\ ( M Ramsey F ) <_ N ) -> N e. NN0 ) | 
						
							| 12 |  | simpr |  |-  ( ( ph /\ ( M Ramsey F ) <_ N ) -> ( M Ramsey F ) <_ N ) | 
						
							| 13 |  | ramubcl |  |-  ( ( ( M e. NN0 /\ R e. V /\ F : R --> NN0 ) /\ ( N e. NN0 /\ ( M Ramsey F ) <_ N ) ) -> ( M Ramsey F ) e. NN0 ) | 
						
							| 14 | 8 9 10 11 12 13 | syl32anc |  |-  ( ( ph /\ ( M Ramsey F ) <_ N ) -> ( M Ramsey F ) e. NN0 ) | 
						
							| 15 |  | fzfid |  |-  ( ( ph /\ ( M Ramsey F ) <_ N ) -> ( 1 ... N ) e. Fin ) | 
						
							| 16 |  | hashfz1 |  |-  ( N e. NN0 -> ( # ` ( 1 ... N ) ) = N ) | 
						
							| 17 | 5 16 | syl |  |-  ( ph -> ( # ` ( 1 ... N ) ) = N ) | 
						
							| 18 | 17 | breq2d |  |-  ( ph -> ( ( M Ramsey F ) <_ ( # ` ( 1 ... N ) ) <-> ( M Ramsey F ) <_ N ) ) | 
						
							| 19 | 18 | biimpar |  |-  ( ( ph /\ ( M Ramsey F ) <_ N ) -> ( M Ramsey F ) <_ ( # ` ( 1 ... N ) ) ) | 
						
							| 20 | 6 | adantr |  |-  ( ( ph /\ ( M Ramsey F ) <_ N ) -> G : ( ( 1 ... N ) C M ) --> R ) | 
						
							| 21 | 1 8 9 10 14 15 19 20 | rami |  |-  ( ( ph /\ ( M Ramsey F ) <_ N ) -> E. c e. R E. x e. ~P ( 1 ... N ) ( ( F ` c ) <_ ( # ` x ) /\ ( x C M ) C_ ( `' G " { c } ) ) ) | 
						
							| 22 |  | elpwi |  |-  ( x e. ~P ( 1 ... N ) -> x C_ ( 1 ... N ) ) | 
						
							| 23 | 7 | adantlr |  |-  ( ( ( ph /\ ( M Ramsey F ) <_ N ) /\ ( c e. R /\ x C_ ( 1 ... N ) ) ) -> ( ( x C M ) C_ ( `' G " { c } ) -> ( # ` x ) < ( F ` c ) ) ) | 
						
							| 24 |  | fzfid |  |-  ( ( ( ph /\ ( M Ramsey F ) <_ N ) /\ ( c e. R /\ x C_ ( 1 ... N ) ) ) -> ( 1 ... N ) e. Fin ) | 
						
							| 25 |  | simprr |  |-  ( ( ( ph /\ ( M Ramsey F ) <_ N ) /\ ( c e. R /\ x C_ ( 1 ... N ) ) ) -> x C_ ( 1 ... N ) ) | 
						
							| 26 | 24 25 | ssfid |  |-  ( ( ( ph /\ ( M Ramsey F ) <_ N ) /\ ( c e. R /\ x C_ ( 1 ... N ) ) ) -> x e. Fin ) | 
						
							| 27 |  | hashcl |  |-  ( x e. Fin -> ( # ` x ) e. NN0 ) | 
						
							| 28 | 26 27 | syl |  |-  ( ( ( ph /\ ( M Ramsey F ) <_ N ) /\ ( c e. R /\ x C_ ( 1 ... N ) ) ) -> ( # ` x ) e. NN0 ) | 
						
							| 29 | 28 | nn0red |  |-  ( ( ( ph /\ ( M Ramsey F ) <_ N ) /\ ( c e. R /\ x C_ ( 1 ... N ) ) ) -> ( # ` x ) e. RR ) | 
						
							| 30 |  | simpl |  |-  ( ( c e. R /\ x C_ ( 1 ... N ) ) -> c e. R ) | 
						
							| 31 |  | ffvelcdm |  |-  ( ( F : R --> NN0 /\ c e. R ) -> ( F ` c ) e. NN0 ) | 
						
							| 32 | 10 30 31 | syl2an |  |-  ( ( ( ph /\ ( M Ramsey F ) <_ N ) /\ ( c e. R /\ x C_ ( 1 ... N ) ) ) -> ( F ` c ) e. NN0 ) | 
						
							| 33 | 32 | nn0red |  |-  ( ( ( ph /\ ( M Ramsey F ) <_ N ) /\ ( c e. R /\ x C_ ( 1 ... N ) ) ) -> ( F ` c ) e. RR ) | 
						
							| 34 | 29 33 | ltnled |  |-  ( ( ( ph /\ ( M Ramsey F ) <_ N ) /\ ( c e. R /\ x C_ ( 1 ... N ) ) ) -> ( ( # ` x ) < ( F ` c ) <-> -. ( F ` c ) <_ ( # ` x ) ) ) | 
						
							| 35 | 23 34 | sylibd |  |-  ( ( ( ph /\ ( M Ramsey F ) <_ N ) /\ ( c e. R /\ x C_ ( 1 ... N ) ) ) -> ( ( x C M ) C_ ( `' G " { c } ) -> -. ( F ` c ) <_ ( # ` x ) ) ) | 
						
							| 36 | 22 35 | sylanr2 |  |-  ( ( ( ph /\ ( M Ramsey F ) <_ N ) /\ ( c e. R /\ x e. ~P ( 1 ... N ) ) ) -> ( ( x C M ) C_ ( `' G " { c } ) -> -. ( F ` c ) <_ ( # ` x ) ) ) | 
						
							| 37 | 36 | con2d |  |-  ( ( ( ph /\ ( M Ramsey F ) <_ N ) /\ ( c e. R /\ x e. ~P ( 1 ... N ) ) ) -> ( ( F ` c ) <_ ( # ` x ) -> -. ( x C M ) C_ ( `' G " { c } ) ) ) | 
						
							| 38 |  | imnan |  |-  ( ( ( F ` c ) <_ ( # ` x ) -> -. ( x C M ) C_ ( `' G " { c } ) ) <-> -. ( ( F ` c ) <_ ( # ` x ) /\ ( x C M ) C_ ( `' G " { c } ) ) ) | 
						
							| 39 | 37 38 | sylib |  |-  ( ( ( ph /\ ( M Ramsey F ) <_ N ) /\ ( c e. R /\ x e. ~P ( 1 ... N ) ) ) -> -. ( ( F ` c ) <_ ( # ` x ) /\ ( x C M ) C_ ( `' G " { c } ) ) ) | 
						
							| 40 | 39 | pm2.21d |  |-  ( ( ( ph /\ ( M Ramsey F ) <_ N ) /\ ( c e. R /\ x e. ~P ( 1 ... N ) ) ) -> ( ( ( F ` c ) <_ ( # ` x ) /\ ( x C M ) C_ ( `' G " { c } ) ) -> -. ( M Ramsey F ) <_ N ) ) | 
						
							| 41 | 40 | rexlimdvva |  |-  ( ( ph /\ ( M Ramsey F ) <_ N ) -> ( E. c e. R E. x e. ~P ( 1 ... N ) ( ( F ` c ) <_ ( # ` x ) /\ ( x C M ) C_ ( `' G " { c } ) ) -> -. ( M Ramsey F ) <_ N ) ) | 
						
							| 42 | 21 41 | mpd |  |-  ( ( ph /\ ( M Ramsey F ) <_ N ) -> -. ( M Ramsey F ) <_ N ) | 
						
							| 43 | 42 | pm2.01da |  |-  ( ph -> -. ( M Ramsey F ) <_ N ) | 
						
							| 44 | 5 | nn0red |  |-  ( ph -> N e. RR ) | 
						
							| 45 | 44 | rexrd |  |-  ( ph -> N e. RR* ) | 
						
							| 46 |  | ramxrcl |  |-  ( ( M e. NN0 /\ R e. V /\ F : R --> NN0 ) -> ( M Ramsey F ) e. RR* ) | 
						
							| 47 | 2 3 4 46 | syl3anc |  |-  ( ph -> ( M Ramsey F ) e. RR* ) | 
						
							| 48 |  | xrltnle |  |-  ( ( N e. RR* /\ ( M Ramsey F ) e. RR* ) -> ( N < ( M Ramsey F ) <-> -. ( M Ramsey F ) <_ N ) ) | 
						
							| 49 | 45 47 48 | syl2anc |  |-  ( ph -> ( N < ( M Ramsey F ) <-> -. ( M Ramsey F ) <_ N ) ) | 
						
							| 50 | 43 49 | mpbird |  |-  ( ph -> N < ( M Ramsey F ) ) |