| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
|
| 2 |
|
id |
|
| 3 |
|
0ex |
|
| 4 |
3
|
a1i |
|
| 5 |
|
f0 |
|
| 6 |
5
|
a1i |
|
| 7 |
|
f00 |
|
| 8 |
|
vex |
|
| 9 |
|
simpl |
|
| 10 |
1
|
hashbcval |
|
| 11 |
8 9 10
|
sylancr |
|
| 12 |
|
hashfz1 |
|
| 13 |
12
|
breq1d |
|
| 14 |
13
|
biimpar |
|
| 15 |
|
fzfid |
|
| 16 |
|
hashdom |
|
| 17 |
15 8 16
|
sylancl |
|
| 18 |
14 17
|
mpbid |
|
| 19 |
8
|
domen |
|
| 20 |
18 19
|
sylib |
|
| 21 |
|
simprr |
|
| 22 |
|
velpw |
|
| 23 |
21 22
|
sylibr |
|
| 24 |
|
hasheni |
|
| 25 |
24
|
ad2antrl |
|
| 26 |
12
|
ad2antrr |
|
| 27 |
25 26
|
eqtr3d |
|
| 28 |
23 27
|
jca |
|
| 29 |
28
|
ex |
|
| 30 |
29
|
eximdv |
|
| 31 |
20 30
|
mpd |
|
| 32 |
|
df-rex |
|
| 33 |
31 32
|
sylibr |
|
| 34 |
|
rabn0 |
|
| 35 |
33 34
|
sylibr |
|
| 36 |
11 35
|
eqnetrd |
|
| 37 |
36
|
neneqd |
|
| 38 |
37
|
pm2.21d |
|
| 39 |
38
|
adantld |
|
| 40 |
7 39
|
biimtrid |
|
| 41 |
40
|
impr |
|
| 42 |
1 2 4 6 2 41
|
ramub |
|
| 43 |
|
nnnn0 |
|
| 44 |
3
|
a1i |
|
| 45 |
5
|
a1i |
|
| 46 |
|
nnm1nn0 |
|
| 47 |
|
f0 |
|
| 48 |
|
fzfid |
|
| 49 |
1
|
hashbc2 |
|
| 50 |
48 43 49
|
syl2anc |
|
| 51 |
|
hashfz1 |
|
| 52 |
46 51
|
syl |
|
| 53 |
52
|
oveq1d |
|
| 54 |
|
nnz |
|
| 55 |
|
nnre |
|
| 56 |
55
|
ltm1d |
|
| 57 |
56
|
olcd |
|
| 58 |
|
bcval4 |
|
| 59 |
46 54 57 58
|
syl3anc |
|
| 60 |
50 53 59
|
3eqtrd |
|
| 61 |
|
ovex |
|
| 62 |
|
hasheq0 |
|
| 63 |
61 62
|
ax-mp |
|
| 64 |
60 63
|
sylib |
|
| 65 |
64
|
feq2d |
|
| 66 |
47 65
|
mpbiri |
|
| 67 |
|
noel |
|
| 68 |
67
|
pm2.21i |
|
| 69 |
68
|
ad2antrl |
|
| 70 |
1 43 44 45 46 66 69
|
ramlb |
|
| 71 |
|
ramubcl |
|
| 72 |
2 4 6 2 42 71
|
syl32anc |
|
| 73 |
|
nn0lem1lt |
|
| 74 |
43 72 73
|
syl2anc2 |
|
| 75 |
70 74
|
mpbird |
|
| 76 |
75
|
a1i |
|
| 77 |
72
|
nn0ge0d |
|
| 78 |
|
breq1 |
|
| 79 |
77 78
|
syl5ibrcom |
|
| 80 |
|
elnn0 |
|
| 81 |
80
|
biimpi |
|
| 82 |
76 79 81
|
mpjaod |
|
| 83 |
72
|
nn0red |
|
| 84 |
|
nn0re |
|
| 85 |
83 84
|
letri3d |
|
| 86 |
42 82 85
|
mpbir2and |
|