Metamath Proof Explorer


Theorem ramub

Description: The Ramsey number is a lower bound on the set of all numbers with the Ramsey number property. (Contributed by Mario Carneiro, 22-Apr-2015)

Ref Expression
Hypotheses rami.c C=aV,i0b𝒫a|b=i
rami.m φM0
rami.r φRV
rami.f φF:R0
ramub.n φN0
ramub.i φNsf:sCMRcRx𝒫sFcxxCMf-1c
Assertion ramub φMRamseyFN

Proof

Step Hyp Ref Expression
1 rami.c C=aV,i0b𝒫a|b=i
2 rami.m φM0
3 rami.r φRV
4 rami.f φF:R0
5 ramub.n φN0
6 ramub.i φNsf:sCMRcRx𝒫sFcxxCMf-1c
7 breq1 n=NnsNs
8 7 imbi1d n=NnsfRsCMcRx𝒫sFcxxCMf-1cNsfRsCMcRx𝒫sFcxxCMf-1c
9 8 albidv n=NsnsfRsCMcRx𝒫sFcxxCMf-1csNsfRsCMcRx𝒫sFcxxCMf-1c
10 elmapi fRsCMf:sCMR
11 6 ancom2s φf:sCMRNscRx𝒫sFcxxCMf-1c
12 11 expr φf:sCMRNscRx𝒫sFcxxCMf-1c
13 10 12 sylan2 φfRsCMNscRx𝒫sFcxxCMf-1c
14 13 ralrimdva φNsfRsCMcRx𝒫sFcxxCMf-1c
15 14 alrimiv φsNsfRsCMcRx𝒫sFcxxCMf-1c
16 9 5 15 elrabd φNn0|snsfRsCMcRx𝒫sFcxxCMf-1c
17 eqid n0|snsfRsCMcRx𝒫sFcxxCMf-1c=n0|snsfRsCMcRx𝒫sFcxxCMf-1c
18 1 17 ramtub M0RVF:R0Nn0|snsfRsCMcRx𝒫sFcxxCMf-1cMRamseyFN
19 2 3 4 16 18 syl31anc φMRamseyFN