Metamath Proof Explorer


Theorem ramub

Description: The Ramsey number is a lower bound on the set of all numbers with the Ramsey number property. (Contributed by Mario Carneiro, 22-Apr-2015)

Ref Expression
Hypotheses rami.c C = a V , i 0 b 𝒫 a | b = i
rami.m φ M 0
rami.r φ R V
rami.f φ F : R 0
ramub.n φ N 0
ramub.i φ N s f : s C M R c R x 𝒫 s F c x x C M f -1 c
Assertion ramub φ M Ramsey F N

Proof

Step Hyp Ref Expression
1 rami.c C = a V , i 0 b 𝒫 a | b = i
2 rami.m φ M 0
3 rami.r φ R V
4 rami.f φ F : R 0
5 ramub.n φ N 0
6 ramub.i φ N s f : s C M R c R x 𝒫 s F c x x C M f -1 c
7 breq1 n = N n s N s
8 7 imbi1d n = N n s f R s C M c R x 𝒫 s F c x x C M f -1 c N s f R s C M c R x 𝒫 s F c x x C M f -1 c
9 8 albidv n = N s n s f R s C M c R x 𝒫 s F c x x C M f -1 c s N s f R s C M c R x 𝒫 s F c x x C M f -1 c
10 elmapi f R s C M f : s C M R
11 6 ancom2s φ f : s C M R N s c R x 𝒫 s F c x x C M f -1 c
12 11 expr φ f : s C M R N s c R x 𝒫 s F c x x C M f -1 c
13 10 12 sylan2 φ f R s C M N s c R x 𝒫 s F c x x C M f -1 c
14 13 ralrimdva φ N s f R s C M c R x 𝒫 s F c x x C M f -1 c
15 14 alrimiv φ s N s f R s C M c R x 𝒫 s F c x x C M f -1 c
16 9 5 15 elrabd φ N n 0 | s n s f R s C M c R x 𝒫 s F c x x C M f -1 c
17 eqid n 0 | s n s f R s C M c R x 𝒫 s F c x x C M f -1 c = n 0 | s n s f R s C M c R x 𝒫 s F c x x C M f -1 c
18 1 17 ramtub M 0 R V F : R 0 N n 0 | s n s f R s C M c R x 𝒫 s F c x x C M f -1 c M Ramsey F N
19 2 3 4 16 18 syl31anc φ M Ramsey F N