| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rami.c | ⊢ 𝐶  =  ( 𝑎  ∈  V ,  𝑖  ∈  ℕ0  ↦  { 𝑏  ∈  𝒫  𝑎  ∣  ( ♯ ‘ 𝑏 )  =  𝑖 } ) | 
						
							| 2 |  | rami.m | ⊢ ( 𝜑  →  𝑀  ∈  ℕ0 ) | 
						
							| 3 |  | rami.r | ⊢ ( 𝜑  →  𝑅  ∈  𝑉 ) | 
						
							| 4 |  | rami.f | ⊢ ( 𝜑  →  𝐹 : 𝑅 ⟶ ℕ0 ) | 
						
							| 5 |  | ramub.n | ⊢ ( 𝜑  →  𝑁  ∈  ℕ0 ) | 
						
							| 6 |  | ramub.i | ⊢ ( ( 𝜑  ∧  ( 𝑁  ≤  ( ♯ ‘ 𝑠 )  ∧  𝑓 : ( 𝑠 𝐶 𝑀 ) ⟶ 𝑅 ) )  →  ∃ 𝑐  ∈  𝑅 ∃ 𝑥  ∈  𝒫  𝑠 ( ( 𝐹 ‘ 𝑐 )  ≤  ( ♯ ‘ 𝑥 )  ∧  ( 𝑥 𝐶 𝑀 )  ⊆  ( ◡ 𝑓  “  { 𝑐 } ) ) ) | 
						
							| 7 |  | breq1 | ⊢ ( 𝑛  =  𝑁  →  ( 𝑛  ≤  ( ♯ ‘ 𝑠 )  ↔  𝑁  ≤  ( ♯ ‘ 𝑠 ) ) ) | 
						
							| 8 | 7 | imbi1d | ⊢ ( 𝑛  =  𝑁  →  ( ( 𝑛  ≤  ( ♯ ‘ 𝑠 )  →  ∀ 𝑓  ∈  ( 𝑅  ↑m  ( 𝑠 𝐶 𝑀 ) ) ∃ 𝑐  ∈  𝑅 ∃ 𝑥  ∈  𝒫  𝑠 ( ( 𝐹 ‘ 𝑐 )  ≤  ( ♯ ‘ 𝑥 )  ∧  ( 𝑥 𝐶 𝑀 )  ⊆  ( ◡ 𝑓  “  { 𝑐 } ) ) )  ↔  ( 𝑁  ≤  ( ♯ ‘ 𝑠 )  →  ∀ 𝑓  ∈  ( 𝑅  ↑m  ( 𝑠 𝐶 𝑀 ) ) ∃ 𝑐  ∈  𝑅 ∃ 𝑥  ∈  𝒫  𝑠 ( ( 𝐹 ‘ 𝑐 )  ≤  ( ♯ ‘ 𝑥 )  ∧  ( 𝑥 𝐶 𝑀 )  ⊆  ( ◡ 𝑓  “  { 𝑐 } ) ) ) ) ) | 
						
							| 9 | 8 | albidv | ⊢ ( 𝑛  =  𝑁  →  ( ∀ 𝑠 ( 𝑛  ≤  ( ♯ ‘ 𝑠 )  →  ∀ 𝑓  ∈  ( 𝑅  ↑m  ( 𝑠 𝐶 𝑀 ) ) ∃ 𝑐  ∈  𝑅 ∃ 𝑥  ∈  𝒫  𝑠 ( ( 𝐹 ‘ 𝑐 )  ≤  ( ♯ ‘ 𝑥 )  ∧  ( 𝑥 𝐶 𝑀 )  ⊆  ( ◡ 𝑓  “  { 𝑐 } ) ) )  ↔  ∀ 𝑠 ( 𝑁  ≤  ( ♯ ‘ 𝑠 )  →  ∀ 𝑓  ∈  ( 𝑅  ↑m  ( 𝑠 𝐶 𝑀 ) ) ∃ 𝑐  ∈  𝑅 ∃ 𝑥  ∈  𝒫  𝑠 ( ( 𝐹 ‘ 𝑐 )  ≤  ( ♯ ‘ 𝑥 )  ∧  ( 𝑥 𝐶 𝑀 )  ⊆  ( ◡ 𝑓  “  { 𝑐 } ) ) ) ) ) | 
						
							| 10 |  | elmapi | ⊢ ( 𝑓  ∈  ( 𝑅  ↑m  ( 𝑠 𝐶 𝑀 ) )  →  𝑓 : ( 𝑠 𝐶 𝑀 ) ⟶ 𝑅 ) | 
						
							| 11 | 6 | ancom2s | ⊢ ( ( 𝜑  ∧  ( 𝑓 : ( 𝑠 𝐶 𝑀 ) ⟶ 𝑅  ∧  𝑁  ≤  ( ♯ ‘ 𝑠 ) ) )  →  ∃ 𝑐  ∈  𝑅 ∃ 𝑥  ∈  𝒫  𝑠 ( ( 𝐹 ‘ 𝑐 )  ≤  ( ♯ ‘ 𝑥 )  ∧  ( 𝑥 𝐶 𝑀 )  ⊆  ( ◡ 𝑓  “  { 𝑐 } ) ) ) | 
						
							| 12 | 11 | expr | ⊢ ( ( 𝜑  ∧  𝑓 : ( 𝑠 𝐶 𝑀 ) ⟶ 𝑅 )  →  ( 𝑁  ≤  ( ♯ ‘ 𝑠 )  →  ∃ 𝑐  ∈  𝑅 ∃ 𝑥  ∈  𝒫  𝑠 ( ( 𝐹 ‘ 𝑐 )  ≤  ( ♯ ‘ 𝑥 )  ∧  ( 𝑥 𝐶 𝑀 )  ⊆  ( ◡ 𝑓  “  { 𝑐 } ) ) ) ) | 
						
							| 13 | 10 12 | sylan2 | ⊢ ( ( 𝜑  ∧  𝑓  ∈  ( 𝑅  ↑m  ( 𝑠 𝐶 𝑀 ) ) )  →  ( 𝑁  ≤  ( ♯ ‘ 𝑠 )  →  ∃ 𝑐  ∈  𝑅 ∃ 𝑥  ∈  𝒫  𝑠 ( ( 𝐹 ‘ 𝑐 )  ≤  ( ♯ ‘ 𝑥 )  ∧  ( 𝑥 𝐶 𝑀 )  ⊆  ( ◡ 𝑓  “  { 𝑐 } ) ) ) ) | 
						
							| 14 | 13 | ralrimdva | ⊢ ( 𝜑  →  ( 𝑁  ≤  ( ♯ ‘ 𝑠 )  →  ∀ 𝑓  ∈  ( 𝑅  ↑m  ( 𝑠 𝐶 𝑀 ) ) ∃ 𝑐  ∈  𝑅 ∃ 𝑥  ∈  𝒫  𝑠 ( ( 𝐹 ‘ 𝑐 )  ≤  ( ♯ ‘ 𝑥 )  ∧  ( 𝑥 𝐶 𝑀 )  ⊆  ( ◡ 𝑓  “  { 𝑐 } ) ) ) ) | 
						
							| 15 | 14 | alrimiv | ⊢ ( 𝜑  →  ∀ 𝑠 ( 𝑁  ≤  ( ♯ ‘ 𝑠 )  →  ∀ 𝑓  ∈  ( 𝑅  ↑m  ( 𝑠 𝐶 𝑀 ) ) ∃ 𝑐  ∈  𝑅 ∃ 𝑥  ∈  𝒫  𝑠 ( ( 𝐹 ‘ 𝑐 )  ≤  ( ♯ ‘ 𝑥 )  ∧  ( 𝑥 𝐶 𝑀 )  ⊆  ( ◡ 𝑓  “  { 𝑐 } ) ) ) ) | 
						
							| 16 | 9 5 15 | elrabd | ⊢ ( 𝜑  →  𝑁  ∈  { 𝑛  ∈  ℕ0  ∣  ∀ 𝑠 ( 𝑛  ≤  ( ♯ ‘ 𝑠 )  →  ∀ 𝑓  ∈  ( 𝑅  ↑m  ( 𝑠 𝐶 𝑀 ) ) ∃ 𝑐  ∈  𝑅 ∃ 𝑥  ∈  𝒫  𝑠 ( ( 𝐹 ‘ 𝑐 )  ≤  ( ♯ ‘ 𝑥 )  ∧  ( 𝑥 𝐶 𝑀 )  ⊆  ( ◡ 𝑓  “  { 𝑐 } ) ) ) } ) | 
						
							| 17 |  | eqid | ⊢ { 𝑛  ∈  ℕ0  ∣  ∀ 𝑠 ( 𝑛  ≤  ( ♯ ‘ 𝑠 )  →  ∀ 𝑓  ∈  ( 𝑅  ↑m  ( 𝑠 𝐶 𝑀 ) ) ∃ 𝑐  ∈  𝑅 ∃ 𝑥  ∈  𝒫  𝑠 ( ( 𝐹 ‘ 𝑐 )  ≤  ( ♯ ‘ 𝑥 )  ∧  ( 𝑥 𝐶 𝑀 )  ⊆  ( ◡ 𝑓  “  { 𝑐 } ) ) ) }  =  { 𝑛  ∈  ℕ0  ∣  ∀ 𝑠 ( 𝑛  ≤  ( ♯ ‘ 𝑠 )  →  ∀ 𝑓  ∈  ( 𝑅  ↑m  ( 𝑠 𝐶 𝑀 ) ) ∃ 𝑐  ∈  𝑅 ∃ 𝑥  ∈  𝒫  𝑠 ( ( 𝐹 ‘ 𝑐 )  ≤  ( ♯ ‘ 𝑥 )  ∧  ( 𝑥 𝐶 𝑀 )  ⊆  ( ◡ 𝑓  “  { 𝑐 } ) ) ) } | 
						
							| 18 | 1 17 | ramtub | ⊢ ( ( ( 𝑀  ∈  ℕ0  ∧  𝑅  ∈  𝑉  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  ∧  𝑁  ∈  { 𝑛  ∈  ℕ0  ∣  ∀ 𝑠 ( 𝑛  ≤  ( ♯ ‘ 𝑠 )  →  ∀ 𝑓  ∈  ( 𝑅  ↑m  ( 𝑠 𝐶 𝑀 ) ) ∃ 𝑐  ∈  𝑅 ∃ 𝑥  ∈  𝒫  𝑠 ( ( 𝐹 ‘ 𝑐 )  ≤  ( ♯ ‘ 𝑥 )  ∧  ( 𝑥 𝐶 𝑀 )  ⊆  ( ◡ 𝑓  “  { 𝑐 } ) ) ) } )  →  ( 𝑀  Ramsey  𝐹 )  ≤  𝑁 ) | 
						
							| 19 | 2 3 4 16 18 | syl31anc | ⊢ ( 𝜑  →  ( 𝑀  Ramsey  𝐹 )  ≤  𝑁 ) |