| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rami.c | ⊢ 𝐶  =  ( 𝑎  ∈  V ,  𝑖  ∈  ℕ0  ↦  { 𝑏  ∈  𝒫  𝑎  ∣  ( ♯ ‘ 𝑏 )  =  𝑖 } ) | 
						
							| 2 |  | rami.m | ⊢ ( 𝜑  →  𝑀  ∈  ℕ0 ) | 
						
							| 3 |  | rami.r | ⊢ ( 𝜑  →  𝑅  ∈  𝑉 ) | 
						
							| 4 |  | rami.f | ⊢ ( 𝜑  →  𝐹 : 𝑅 ⟶ ℕ0 ) | 
						
							| 5 |  | ramub2.n | ⊢ ( 𝜑  →  𝑁  ∈  ℕ0 ) | 
						
							| 6 |  | ramub2.i | ⊢ ( ( 𝜑  ∧  ( ( ♯ ‘ 𝑠 )  =  𝑁  ∧  𝑓 : ( 𝑠 𝐶 𝑀 ) ⟶ 𝑅 ) )  →  ∃ 𝑐  ∈  𝑅 ∃ 𝑥  ∈  𝒫  𝑠 ( ( 𝐹 ‘ 𝑐 )  ≤  ( ♯ ‘ 𝑥 )  ∧  ( 𝑥 𝐶 𝑀 )  ⊆  ( ◡ 𝑓  “  { 𝑐 } ) ) ) | 
						
							| 7 | 5 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑁  ≤  ( ♯ ‘ 𝑡 )  ∧  𝑔 : ( 𝑡 𝐶 𝑀 ) ⟶ 𝑅 ) )  →  𝑁  ∈  ℕ0 ) | 
						
							| 8 |  | hashfz1 | ⊢ ( 𝑁  ∈  ℕ0  →  ( ♯ ‘ ( 1 ... 𝑁 ) )  =  𝑁 ) | 
						
							| 9 | 7 8 | syl | ⊢ ( ( 𝜑  ∧  ( 𝑁  ≤  ( ♯ ‘ 𝑡 )  ∧  𝑔 : ( 𝑡 𝐶 𝑀 ) ⟶ 𝑅 ) )  →  ( ♯ ‘ ( 1 ... 𝑁 ) )  =  𝑁 ) | 
						
							| 10 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑁  ≤  ( ♯ ‘ 𝑡 )  ∧  𝑔 : ( 𝑡 𝐶 𝑀 ) ⟶ 𝑅 ) )  →  𝑁  ≤  ( ♯ ‘ 𝑡 ) ) | 
						
							| 11 | 9 10 | eqbrtrd | ⊢ ( ( 𝜑  ∧  ( 𝑁  ≤  ( ♯ ‘ 𝑡 )  ∧  𝑔 : ( 𝑡 𝐶 𝑀 ) ⟶ 𝑅 ) )  →  ( ♯ ‘ ( 1 ... 𝑁 ) )  ≤  ( ♯ ‘ 𝑡 ) ) | 
						
							| 12 |  | fzfid | ⊢ ( ( 𝜑  ∧  ( 𝑁  ≤  ( ♯ ‘ 𝑡 )  ∧  𝑔 : ( 𝑡 𝐶 𝑀 ) ⟶ 𝑅 ) )  →  ( 1 ... 𝑁 )  ∈  Fin ) | 
						
							| 13 |  | vex | ⊢ 𝑡  ∈  V | 
						
							| 14 |  | hashdom | ⊢ ( ( ( 1 ... 𝑁 )  ∈  Fin  ∧  𝑡  ∈  V )  →  ( ( ♯ ‘ ( 1 ... 𝑁 ) )  ≤  ( ♯ ‘ 𝑡 )  ↔  ( 1 ... 𝑁 )  ≼  𝑡 ) ) | 
						
							| 15 | 12 13 14 | sylancl | ⊢ ( ( 𝜑  ∧  ( 𝑁  ≤  ( ♯ ‘ 𝑡 )  ∧  𝑔 : ( 𝑡 𝐶 𝑀 ) ⟶ 𝑅 ) )  →  ( ( ♯ ‘ ( 1 ... 𝑁 ) )  ≤  ( ♯ ‘ 𝑡 )  ↔  ( 1 ... 𝑁 )  ≼  𝑡 ) ) | 
						
							| 16 | 11 15 | mpbid | ⊢ ( ( 𝜑  ∧  ( 𝑁  ≤  ( ♯ ‘ 𝑡 )  ∧  𝑔 : ( 𝑡 𝐶 𝑀 ) ⟶ 𝑅 ) )  →  ( 1 ... 𝑁 )  ≼  𝑡 ) | 
						
							| 17 | 13 | domen | ⊢ ( ( 1 ... 𝑁 )  ≼  𝑡  ↔  ∃ 𝑠 ( ( 1 ... 𝑁 )  ≈  𝑠  ∧  𝑠  ⊆  𝑡 ) ) | 
						
							| 18 | 16 17 | sylib | ⊢ ( ( 𝜑  ∧  ( 𝑁  ≤  ( ♯ ‘ 𝑡 )  ∧  𝑔 : ( 𝑡 𝐶 𝑀 ) ⟶ 𝑅 ) )  →  ∃ 𝑠 ( ( 1 ... 𝑁 )  ≈  𝑠  ∧  𝑠  ⊆  𝑡 ) ) | 
						
							| 19 |  | simpll | ⊢ ( ( ( 𝜑  ∧  ( 𝑁  ≤  ( ♯ ‘ 𝑡 )  ∧  𝑔 : ( 𝑡 𝐶 𝑀 ) ⟶ 𝑅 ) )  ∧  ( ( 1 ... 𝑁 )  ≈  𝑠  ∧  𝑠  ⊆  𝑡 ) )  →  𝜑 ) | 
						
							| 20 |  | ensym | ⊢ ( ( 1 ... 𝑁 )  ≈  𝑠  →  𝑠  ≈  ( 1 ... 𝑁 ) ) | 
						
							| 21 | 20 | ad2antrl | ⊢ ( ( ( 𝜑  ∧  ( 𝑁  ≤  ( ♯ ‘ 𝑡 )  ∧  𝑔 : ( 𝑡 𝐶 𝑀 ) ⟶ 𝑅 ) )  ∧  ( ( 1 ... 𝑁 )  ≈  𝑠  ∧  𝑠  ⊆  𝑡 ) )  →  𝑠  ≈  ( 1 ... 𝑁 ) ) | 
						
							| 22 |  | hasheni | ⊢ ( 𝑠  ≈  ( 1 ... 𝑁 )  →  ( ♯ ‘ 𝑠 )  =  ( ♯ ‘ ( 1 ... 𝑁 ) ) ) | 
						
							| 23 | 21 22 | syl | ⊢ ( ( ( 𝜑  ∧  ( 𝑁  ≤  ( ♯ ‘ 𝑡 )  ∧  𝑔 : ( 𝑡 𝐶 𝑀 ) ⟶ 𝑅 ) )  ∧  ( ( 1 ... 𝑁 )  ≈  𝑠  ∧  𝑠  ⊆  𝑡 ) )  →  ( ♯ ‘ 𝑠 )  =  ( ♯ ‘ ( 1 ... 𝑁 ) ) ) | 
						
							| 24 | 5 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑁  ≤  ( ♯ ‘ 𝑡 )  ∧  𝑔 : ( 𝑡 𝐶 𝑀 ) ⟶ 𝑅 ) )  ∧  ( ( 1 ... 𝑁 )  ≈  𝑠  ∧  𝑠  ⊆  𝑡 ) )  →  𝑁  ∈  ℕ0 ) | 
						
							| 25 | 24 8 | syl | ⊢ ( ( ( 𝜑  ∧  ( 𝑁  ≤  ( ♯ ‘ 𝑡 )  ∧  𝑔 : ( 𝑡 𝐶 𝑀 ) ⟶ 𝑅 ) )  ∧  ( ( 1 ... 𝑁 )  ≈  𝑠  ∧  𝑠  ⊆  𝑡 ) )  →  ( ♯ ‘ ( 1 ... 𝑁 ) )  =  𝑁 ) | 
						
							| 26 | 23 25 | eqtrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑁  ≤  ( ♯ ‘ 𝑡 )  ∧  𝑔 : ( 𝑡 𝐶 𝑀 ) ⟶ 𝑅 ) )  ∧  ( ( 1 ... 𝑁 )  ≈  𝑠  ∧  𝑠  ⊆  𝑡 ) )  →  ( ♯ ‘ 𝑠 )  =  𝑁 ) | 
						
							| 27 |  | simplrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑁  ≤  ( ♯ ‘ 𝑡 )  ∧  𝑔 : ( 𝑡 𝐶 𝑀 ) ⟶ 𝑅 ) )  ∧  ( ( 1 ... 𝑁 )  ≈  𝑠  ∧  𝑠  ⊆  𝑡 ) )  →  𝑔 : ( 𝑡 𝐶 𝑀 ) ⟶ 𝑅 ) | 
						
							| 28 |  | simprr | ⊢ ( ( ( 𝜑  ∧  ( 𝑁  ≤  ( ♯ ‘ 𝑡 )  ∧  𝑔 : ( 𝑡 𝐶 𝑀 ) ⟶ 𝑅 ) )  ∧  ( ( 1 ... 𝑁 )  ≈  𝑠  ∧  𝑠  ⊆  𝑡 ) )  →  𝑠  ⊆  𝑡 ) | 
						
							| 29 | 2 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑁  ≤  ( ♯ ‘ 𝑡 )  ∧  𝑔 : ( 𝑡 𝐶 𝑀 ) ⟶ 𝑅 ) )  ∧  ( ( 1 ... 𝑁 )  ≈  𝑠  ∧  𝑠  ⊆  𝑡 ) )  →  𝑀  ∈  ℕ0 ) | 
						
							| 30 | 1 | hashbcss | ⊢ ( ( 𝑡  ∈  V  ∧  𝑠  ⊆  𝑡  ∧  𝑀  ∈  ℕ0 )  →  ( 𝑠 𝐶 𝑀 )  ⊆  ( 𝑡 𝐶 𝑀 ) ) | 
						
							| 31 | 13 28 29 30 | mp3an2i | ⊢ ( ( ( 𝜑  ∧  ( 𝑁  ≤  ( ♯ ‘ 𝑡 )  ∧  𝑔 : ( 𝑡 𝐶 𝑀 ) ⟶ 𝑅 ) )  ∧  ( ( 1 ... 𝑁 )  ≈  𝑠  ∧  𝑠  ⊆  𝑡 ) )  →  ( 𝑠 𝐶 𝑀 )  ⊆  ( 𝑡 𝐶 𝑀 ) ) | 
						
							| 32 | 27 31 | fssresd | ⊢ ( ( ( 𝜑  ∧  ( 𝑁  ≤  ( ♯ ‘ 𝑡 )  ∧  𝑔 : ( 𝑡 𝐶 𝑀 ) ⟶ 𝑅 ) )  ∧  ( ( 1 ... 𝑁 )  ≈  𝑠  ∧  𝑠  ⊆  𝑡 ) )  →  ( 𝑔  ↾  ( 𝑠 𝐶 𝑀 ) ) : ( 𝑠 𝐶 𝑀 ) ⟶ 𝑅 ) | 
						
							| 33 |  | vex | ⊢ 𝑔  ∈  V | 
						
							| 34 | 33 | resex | ⊢ ( 𝑔  ↾  ( 𝑠 𝐶 𝑀 ) )  ∈  V | 
						
							| 35 |  | feq1 | ⊢ ( 𝑓  =  ( 𝑔  ↾  ( 𝑠 𝐶 𝑀 ) )  →  ( 𝑓 : ( 𝑠 𝐶 𝑀 ) ⟶ 𝑅  ↔  ( 𝑔  ↾  ( 𝑠 𝐶 𝑀 ) ) : ( 𝑠 𝐶 𝑀 ) ⟶ 𝑅 ) ) | 
						
							| 36 | 35 | anbi2d | ⊢ ( 𝑓  =  ( 𝑔  ↾  ( 𝑠 𝐶 𝑀 ) )  →  ( ( ( ♯ ‘ 𝑠 )  =  𝑁  ∧  𝑓 : ( 𝑠 𝐶 𝑀 ) ⟶ 𝑅 )  ↔  ( ( ♯ ‘ 𝑠 )  =  𝑁  ∧  ( 𝑔  ↾  ( 𝑠 𝐶 𝑀 ) ) : ( 𝑠 𝐶 𝑀 ) ⟶ 𝑅 ) ) ) | 
						
							| 37 | 36 | anbi2d | ⊢ ( 𝑓  =  ( 𝑔  ↾  ( 𝑠 𝐶 𝑀 ) )  →  ( ( 𝜑  ∧  ( ( ♯ ‘ 𝑠 )  =  𝑁  ∧  𝑓 : ( 𝑠 𝐶 𝑀 ) ⟶ 𝑅 ) )  ↔  ( 𝜑  ∧  ( ( ♯ ‘ 𝑠 )  =  𝑁  ∧  ( 𝑔  ↾  ( 𝑠 𝐶 𝑀 ) ) : ( 𝑠 𝐶 𝑀 ) ⟶ 𝑅 ) ) ) ) | 
						
							| 38 |  | cnveq | ⊢ ( 𝑓  =  ( 𝑔  ↾  ( 𝑠 𝐶 𝑀 ) )  →  ◡ 𝑓  =  ◡ ( 𝑔  ↾  ( 𝑠 𝐶 𝑀 ) ) ) | 
						
							| 39 | 38 | imaeq1d | ⊢ ( 𝑓  =  ( 𝑔  ↾  ( 𝑠 𝐶 𝑀 ) )  →  ( ◡ 𝑓  “  { 𝑐 } )  =  ( ◡ ( 𝑔  ↾  ( 𝑠 𝐶 𝑀 ) )  “  { 𝑐 } ) ) | 
						
							| 40 |  | cnvresima | ⊢ ( ◡ ( 𝑔  ↾  ( 𝑠 𝐶 𝑀 ) )  “  { 𝑐 } )  =  ( ( ◡ 𝑔  “  { 𝑐 } )  ∩  ( 𝑠 𝐶 𝑀 ) ) | 
						
							| 41 | 39 40 | eqtrdi | ⊢ ( 𝑓  =  ( 𝑔  ↾  ( 𝑠 𝐶 𝑀 ) )  →  ( ◡ 𝑓  “  { 𝑐 } )  =  ( ( ◡ 𝑔  “  { 𝑐 } )  ∩  ( 𝑠 𝐶 𝑀 ) ) ) | 
						
							| 42 | 41 | sseq2d | ⊢ ( 𝑓  =  ( 𝑔  ↾  ( 𝑠 𝐶 𝑀 ) )  →  ( ( 𝑥 𝐶 𝑀 )  ⊆  ( ◡ 𝑓  “  { 𝑐 } )  ↔  ( 𝑥 𝐶 𝑀 )  ⊆  ( ( ◡ 𝑔  “  { 𝑐 } )  ∩  ( 𝑠 𝐶 𝑀 ) ) ) ) | 
						
							| 43 | 42 | anbi2d | ⊢ ( 𝑓  =  ( 𝑔  ↾  ( 𝑠 𝐶 𝑀 ) )  →  ( ( ( 𝐹 ‘ 𝑐 )  ≤  ( ♯ ‘ 𝑥 )  ∧  ( 𝑥 𝐶 𝑀 )  ⊆  ( ◡ 𝑓  “  { 𝑐 } ) )  ↔  ( ( 𝐹 ‘ 𝑐 )  ≤  ( ♯ ‘ 𝑥 )  ∧  ( 𝑥 𝐶 𝑀 )  ⊆  ( ( ◡ 𝑔  “  { 𝑐 } )  ∩  ( 𝑠 𝐶 𝑀 ) ) ) ) ) | 
						
							| 44 | 43 | 2rexbidv | ⊢ ( 𝑓  =  ( 𝑔  ↾  ( 𝑠 𝐶 𝑀 ) )  →  ( ∃ 𝑐  ∈  𝑅 ∃ 𝑥  ∈  𝒫  𝑠 ( ( 𝐹 ‘ 𝑐 )  ≤  ( ♯ ‘ 𝑥 )  ∧  ( 𝑥 𝐶 𝑀 )  ⊆  ( ◡ 𝑓  “  { 𝑐 } ) )  ↔  ∃ 𝑐  ∈  𝑅 ∃ 𝑥  ∈  𝒫  𝑠 ( ( 𝐹 ‘ 𝑐 )  ≤  ( ♯ ‘ 𝑥 )  ∧  ( 𝑥 𝐶 𝑀 )  ⊆  ( ( ◡ 𝑔  “  { 𝑐 } )  ∩  ( 𝑠 𝐶 𝑀 ) ) ) ) ) | 
						
							| 45 | 37 44 | imbi12d | ⊢ ( 𝑓  =  ( 𝑔  ↾  ( 𝑠 𝐶 𝑀 ) )  →  ( ( ( 𝜑  ∧  ( ( ♯ ‘ 𝑠 )  =  𝑁  ∧  𝑓 : ( 𝑠 𝐶 𝑀 ) ⟶ 𝑅 ) )  →  ∃ 𝑐  ∈  𝑅 ∃ 𝑥  ∈  𝒫  𝑠 ( ( 𝐹 ‘ 𝑐 )  ≤  ( ♯ ‘ 𝑥 )  ∧  ( 𝑥 𝐶 𝑀 )  ⊆  ( ◡ 𝑓  “  { 𝑐 } ) ) )  ↔  ( ( 𝜑  ∧  ( ( ♯ ‘ 𝑠 )  =  𝑁  ∧  ( 𝑔  ↾  ( 𝑠 𝐶 𝑀 ) ) : ( 𝑠 𝐶 𝑀 ) ⟶ 𝑅 ) )  →  ∃ 𝑐  ∈  𝑅 ∃ 𝑥  ∈  𝒫  𝑠 ( ( 𝐹 ‘ 𝑐 )  ≤  ( ♯ ‘ 𝑥 )  ∧  ( 𝑥 𝐶 𝑀 )  ⊆  ( ( ◡ 𝑔  “  { 𝑐 } )  ∩  ( 𝑠 𝐶 𝑀 ) ) ) ) ) ) | 
						
							| 46 | 34 45 6 | vtocl | ⊢ ( ( 𝜑  ∧  ( ( ♯ ‘ 𝑠 )  =  𝑁  ∧  ( 𝑔  ↾  ( 𝑠 𝐶 𝑀 ) ) : ( 𝑠 𝐶 𝑀 ) ⟶ 𝑅 ) )  →  ∃ 𝑐  ∈  𝑅 ∃ 𝑥  ∈  𝒫  𝑠 ( ( 𝐹 ‘ 𝑐 )  ≤  ( ♯ ‘ 𝑥 )  ∧  ( 𝑥 𝐶 𝑀 )  ⊆  ( ( ◡ 𝑔  “  { 𝑐 } )  ∩  ( 𝑠 𝐶 𝑀 ) ) ) ) | 
						
							| 47 | 19 26 32 46 | syl12anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑁  ≤  ( ♯ ‘ 𝑡 )  ∧  𝑔 : ( 𝑡 𝐶 𝑀 ) ⟶ 𝑅 ) )  ∧  ( ( 1 ... 𝑁 )  ≈  𝑠  ∧  𝑠  ⊆  𝑡 ) )  →  ∃ 𝑐  ∈  𝑅 ∃ 𝑥  ∈  𝒫  𝑠 ( ( 𝐹 ‘ 𝑐 )  ≤  ( ♯ ‘ 𝑥 )  ∧  ( 𝑥 𝐶 𝑀 )  ⊆  ( ( ◡ 𝑔  “  { 𝑐 } )  ∩  ( 𝑠 𝐶 𝑀 ) ) ) ) | 
						
							| 48 |  | sstr | ⊢ ( ( 𝑥  ⊆  𝑠  ∧  𝑠  ⊆  𝑡 )  →  𝑥  ⊆  𝑡 ) | 
						
							| 49 | 48 | expcom | ⊢ ( 𝑠  ⊆  𝑡  →  ( 𝑥  ⊆  𝑠  →  𝑥  ⊆  𝑡 ) ) | 
						
							| 50 | 49 | ad2antll | ⊢ ( ( ( 𝜑  ∧  ( 𝑁  ≤  ( ♯ ‘ 𝑡 )  ∧  𝑔 : ( 𝑡 𝐶 𝑀 ) ⟶ 𝑅 ) )  ∧  ( ( 1 ... 𝑁 )  ≈  𝑠  ∧  𝑠  ⊆  𝑡 ) )  →  ( 𝑥  ⊆  𝑠  →  𝑥  ⊆  𝑡 ) ) | 
						
							| 51 |  | velpw | ⊢ ( 𝑥  ∈  𝒫  𝑠  ↔  𝑥  ⊆  𝑠 ) | 
						
							| 52 |  | velpw | ⊢ ( 𝑥  ∈  𝒫  𝑡  ↔  𝑥  ⊆  𝑡 ) | 
						
							| 53 | 50 51 52 | 3imtr4g | ⊢ ( ( ( 𝜑  ∧  ( 𝑁  ≤  ( ♯ ‘ 𝑡 )  ∧  𝑔 : ( 𝑡 𝐶 𝑀 ) ⟶ 𝑅 ) )  ∧  ( ( 1 ... 𝑁 )  ≈  𝑠  ∧  𝑠  ⊆  𝑡 ) )  →  ( 𝑥  ∈  𝒫  𝑠  →  𝑥  ∈  𝒫  𝑡 ) ) | 
						
							| 54 |  | id | ⊢ ( ( 𝑥 𝐶 𝑀 )  ⊆  ( ( ◡ 𝑔  “  { 𝑐 } )  ∩  ( 𝑠 𝐶 𝑀 ) )  →  ( 𝑥 𝐶 𝑀 )  ⊆  ( ( ◡ 𝑔  “  { 𝑐 } )  ∩  ( 𝑠 𝐶 𝑀 ) ) ) | 
						
							| 55 |  | inss1 | ⊢ ( ( ◡ 𝑔  “  { 𝑐 } )  ∩  ( 𝑠 𝐶 𝑀 ) )  ⊆  ( ◡ 𝑔  “  { 𝑐 } ) | 
						
							| 56 | 54 55 | sstrdi | ⊢ ( ( 𝑥 𝐶 𝑀 )  ⊆  ( ( ◡ 𝑔  “  { 𝑐 } )  ∩  ( 𝑠 𝐶 𝑀 ) )  →  ( 𝑥 𝐶 𝑀 )  ⊆  ( ◡ 𝑔  “  { 𝑐 } ) ) | 
						
							| 57 | 56 | a1i | ⊢ ( ( ( 𝜑  ∧  ( 𝑁  ≤  ( ♯ ‘ 𝑡 )  ∧  𝑔 : ( 𝑡 𝐶 𝑀 ) ⟶ 𝑅 ) )  ∧  ( ( 1 ... 𝑁 )  ≈  𝑠  ∧  𝑠  ⊆  𝑡 ) )  →  ( ( 𝑥 𝐶 𝑀 )  ⊆  ( ( ◡ 𝑔  “  { 𝑐 } )  ∩  ( 𝑠 𝐶 𝑀 ) )  →  ( 𝑥 𝐶 𝑀 )  ⊆  ( ◡ 𝑔  “  { 𝑐 } ) ) ) | 
						
							| 58 | 57 | anim2d | ⊢ ( ( ( 𝜑  ∧  ( 𝑁  ≤  ( ♯ ‘ 𝑡 )  ∧  𝑔 : ( 𝑡 𝐶 𝑀 ) ⟶ 𝑅 ) )  ∧  ( ( 1 ... 𝑁 )  ≈  𝑠  ∧  𝑠  ⊆  𝑡 ) )  →  ( ( ( 𝐹 ‘ 𝑐 )  ≤  ( ♯ ‘ 𝑥 )  ∧  ( 𝑥 𝐶 𝑀 )  ⊆  ( ( ◡ 𝑔  “  { 𝑐 } )  ∩  ( 𝑠 𝐶 𝑀 ) ) )  →  ( ( 𝐹 ‘ 𝑐 )  ≤  ( ♯ ‘ 𝑥 )  ∧  ( 𝑥 𝐶 𝑀 )  ⊆  ( ◡ 𝑔  “  { 𝑐 } ) ) ) ) | 
						
							| 59 | 53 58 | anim12d | ⊢ ( ( ( 𝜑  ∧  ( 𝑁  ≤  ( ♯ ‘ 𝑡 )  ∧  𝑔 : ( 𝑡 𝐶 𝑀 ) ⟶ 𝑅 ) )  ∧  ( ( 1 ... 𝑁 )  ≈  𝑠  ∧  𝑠  ⊆  𝑡 ) )  →  ( ( 𝑥  ∈  𝒫  𝑠  ∧  ( ( 𝐹 ‘ 𝑐 )  ≤  ( ♯ ‘ 𝑥 )  ∧  ( 𝑥 𝐶 𝑀 )  ⊆  ( ( ◡ 𝑔  “  { 𝑐 } )  ∩  ( 𝑠 𝐶 𝑀 ) ) ) )  →  ( 𝑥  ∈  𝒫  𝑡  ∧  ( ( 𝐹 ‘ 𝑐 )  ≤  ( ♯ ‘ 𝑥 )  ∧  ( 𝑥 𝐶 𝑀 )  ⊆  ( ◡ 𝑔  “  { 𝑐 } ) ) ) ) ) | 
						
							| 60 | 59 | reximdv2 | ⊢ ( ( ( 𝜑  ∧  ( 𝑁  ≤  ( ♯ ‘ 𝑡 )  ∧  𝑔 : ( 𝑡 𝐶 𝑀 ) ⟶ 𝑅 ) )  ∧  ( ( 1 ... 𝑁 )  ≈  𝑠  ∧  𝑠  ⊆  𝑡 ) )  →  ( ∃ 𝑥  ∈  𝒫  𝑠 ( ( 𝐹 ‘ 𝑐 )  ≤  ( ♯ ‘ 𝑥 )  ∧  ( 𝑥 𝐶 𝑀 )  ⊆  ( ( ◡ 𝑔  “  { 𝑐 } )  ∩  ( 𝑠 𝐶 𝑀 ) ) )  →  ∃ 𝑥  ∈  𝒫  𝑡 ( ( 𝐹 ‘ 𝑐 )  ≤  ( ♯ ‘ 𝑥 )  ∧  ( 𝑥 𝐶 𝑀 )  ⊆  ( ◡ 𝑔  “  { 𝑐 } ) ) ) ) | 
						
							| 61 | 60 | reximdv | ⊢ ( ( ( 𝜑  ∧  ( 𝑁  ≤  ( ♯ ‘ 𝑡 )  ∧  𝑔 : ( 𝑡 𝐶 𝑀 ) ⟶ 𝑅 ) )  ∧  ( ( 1 ... 𝑁 )  ≈  𝑠  ∧  𝑠  ⊆  𝑡 ) )  →  ( ∃ 𝑐  ∈  𝑅 ∃ 𝑥  ∈  𝒫  𝑠 ( ( 𝐹 ‘ 𝑐 )  ≤  ( ♯ ‘ 𝑥 )  ∧  ( 𝑥 𝐶 𝑀 )  ⊆  ( ( ◡ 𝑔  “  { 𝑐 } )  ∩  ( 𝑠 𝐶 𝑀 ) ) )  →  ∃ 𝑐  ∈  𝑅 ∃ 𝑥  ∈  𝒫  𝑡 ( ( 𝐹 ‘ 𝑐 )  ≤  ( ♯ ‘ 𝑥 )  ∧  ( 𝑥 𝐶 𝑀 )  ⊆  ( ◡ 𝑔  “  { 𝑐 } ) ) ) ) | 
						
							| 62 | 47 61 | mpd | ⊢ ( ( ( 𝜑  ∧  ( 𝑁  ≤  ( ♯ ‘ 𝑡 )  ∧  𝑔 : ( 𝑡 𝐶 𝑀 ) ⟶ 𝑅 ) )  ∧  ( ( 1 ... 𝑁 )  ≈  𝑠  ∧  𝑠  ⊆  𝑡 ) )  →  ∃ 𝑐  ∈  𝑅 ∃ 𝑥  ∈  𝒫  𝑡 ( ( 𝐹 ‘ 𝑐 )  ≤  ( ♯ ‘ 𝑥 )  ∧  ( 𝑥 𝐶 𝑀 )  ⊆  ( ◡ 𝑔  “  { 𝑐 } ) ) ) | 
						
							| 63 | 18 62 | exlimddv | ⊢ ( ( 𝜑  ∧  ( 𝑁  ≤  ( ♯ ‘ 𝑡 )  ∧  𝑔 : ( 𝑡 𝐶 𝑀 ) ⟶ 𝑅 ) )  →  ∃ 𝑐  ∈  𝑅 ∃ 𝑥  ∈  𝒫  𝑡 ( ( 𝐹 ‘ 𝑐 )  ≤  ( ♯ ‘ 𝑥 )  ∧  ( 𝑥 𝐶 𝑀 )  ⊆  ( ◡ 𝑔  “  { 𝑐 } ) ) ) | 
						
							| 64 | 1 2 3 4 5 63 | ramub | ⊢ ( 𝜑  →  ( 𝑀  Ramsey  𝐹 )  ≤  𝑁 ) |