| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rami.c |  |-  C = ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) | 
						
							| 2 |  | rami.m |  |-  ( ph -> M e. NN0 ) | 
						
							| 3 |  | rami.r |  |-  ( ph -> R e. V ) | 
						
							| 4 |  | rami.f |  |-  ( ph -> F : R --> NN0 ) | 
						
							| 5 |  | ramub2.n |  |-  ( ph -> N e. NN0 ) | 
						
							| 6 |  | ramub2.i |  |-  ( ( ph /\ ( ( # ` s ) = N /\ f : ( s C M ) --> R ) ) -> E. c e. R E. x e. ~P s ( ( F ` c ) <_ ( # ` x ) /\ ( x C M ) C_ ( `' f " { c } ) ) ) | 
						
							| 7 | 5 | adantr |  |-  ( ( ph /\ ( N <_ ( # ` t ) /\ g : ( t C M ) --> R ) ) -> N e. NN0 ) | 
						
							| 8 |  | hashfz1 |  |-  ( N e. NN0 -> ( # ` ( 1 ... N ) ) = N ) | 
						
							| 9 | 7 8 | syl |  |-  ( ( ph /\ ( N <_ ( # ` t ) /\ g : ( t C M ) --> R ) ) -> ( # ` ( 1 ... N ) ) = N ) | 
						
							| 10 |  | simprl |  |-  ( ( ph /\ ( N <_ ( # ` t ) /\ g : ( t C M ) --> R ) ) -> N <_ ( # ` t ) ) | 
						
							| 11 | 9 10 | eqbrtrd |  |-  ( ( ph /\ ( N <_ ( # ` t ) /\ g : ( t C M ) --> R ) ) -> ( # ` ( 1 ... N ) ) <_ ( # ` t ) ) | 
						
							| 12 |  | fzfid |  |-  ( ( ph /\ ( N <_ ( # ` t ) /\ g : ( t C M ) --> R ) ) -> ( 1 ... N ) e. Fin ) | 
						
							| 13 |  | vex |  |-  t e. _V | 
						
							| 14 |  | hashdom |  |-  ( ( ( 1 ... N ) e. Fin /\ t e. _V ) -> ( ( # ` ( 1 ... N ) ) <_ ( # ` t ) <-> ( 1 ... N ) ~<_ t ) ) | 
						
							| 15 | 12 13 14 | sylancl |  |-  ( ( ph /\ ( N <_ ( # ` t ) /\ g : ( t C M ) --> R ) ) -> ( ( # ` ( 1 ... N ) ) <_ ( # ` t ) <-> ( 1 ... N ) ~<_ t ) ) | 
						
							| 16 | 11 15 | mpbid |  |-  ( ( ph /\ ( N <_ ( # ` t ) /\ g : ( t C M ) --> R ) ) -> ( 1 ... N ) ~<_ t ) | 
						
							| 17 | 13 | domen |  |-  ( ( 1 ... N ) ~<_ t <-> E. s ( ( 1 ... N ) ~~ s /\ s C_ t ) ) | 
						
							| 18 | 16 17 | sylib |  |-  ( ( ph /\ ( N <_ ( # ` t ) /\ g : ( t C M ) --> R ) ) -> E. s ( ( 1 ... N ) ~~ s /\ s C_ t ) ) | 
						
							| 19 |  | simpll |  |-  ( ( ( ph /\ ( N <_ ( # ` t ) /\ g : ( t C M ) --> R ) ) /\ ( ( 1 ... N ) ~~ s /\ s C_ t ) ) -> ph ) | 
						
							| 20 |  | ensym |  |-  ( ( 1 ... N ) ~~ s -> s ~~ ( 1 ... N ) ) | 
						
							| 21 | 20 | ad2antrl |  |-  ( ( ( ph /\ ( N <_ ( # ` t ) /\ g : ( t C M ) --> R ) ) /\ ( ( 1 ... N ) ~~ s /\ s C_ t ) ) -> s ~~ ( 1 ... N ) ) | 
						
							| 22 |  | hasheni |  |-  ( s ~~ ( 1 ... N ) -> ( # ` s ) = ( # ` ( 1 ... N ) ) ) | 
						
							| 23 | 21 22 | syl |  |-  ( ( ( ph /\ ( N <_ ( # ` t ) /\ g : ( t C M ) --> R ) ) /\ ( ( 1 ... N ) ~~ s /\ s C_ t ) ) -> ( # ` s ) = ( # ` ( 1 ... N ) ) ) | 
						
							| 24 | 5 | ad2antrr |  |-  ( ( ( ph /\ ( N <_ ( # ` t ) /\ g : ( t C M ) --> R ) ) /\ ( ( 1 ... N ) ~~ s /\ s C_ t ) ) -> N e. NN0 ) | 
						
							| 25 | 24 8 | syl |  |-  ( ( ( ph /\ ( N <_ ( # ` t ) /\ g : ( t C M ) --> R ) ) /\ ( ( 1 ... N ) ~~ s /\ s C_ t ) ) -> ( # ` ( 1 ... N ) ) = N ) | 
						
							| 26 | 23 25 | eqtrd |  |-  ( ( ( ph /\ ( N <_ ( # ` t ) /\ g : ( t C M ) --> R ) ) /\ ( ( 1 ... N ) ~~ s /\ s C_ t ) ) -> ( # ` s ) = N ) | 
						
							| 27 |  | simplrr |  |-  ( ( ( ph /\ ( N <_ ( # ` t ) /\ g : ( t C M ) --> R ) ) /\ ( ( 1 ... N ) ~~ s /\ s C_ t ) ) -> g : ( t C M ) --> R ) | 
						
							| 28 |  | simprr |  |-  ( ( ( ph /\ ( N <_ ( # ` t ) /\ g : ( t C M ) --> R ) ) /\ ( ( 1 ... N ) ~~ s /\ s C_ t ) ) -> s C_ t ) | 
						
							| 29 | 2 | ad2antrr |  |-  ( ( ( ph /\ ( N <_ ( # ` t ) /\ g : ( t C M ) --> R ) ) /\ ( ( 1 ... N ) ~~ s /\ s C_ t ) ) -> M e. NN0 ) | 
						
							| 30 | 1 | hashbcss |  |-  ( ( t e. _V /\ s C_ t /\ M e. NN0 ) -> ( s C M ) C_ ( t C M ) ) | 
						
							| 31 | 13 28 29 30 | mp3an2i |  |-  ( ( ( ph /\ ( N <_ ( # ` t ) /\ g : ( t C M ) --> R ) ) /\ ( ( 1 ... N ) ~~ s /\ s C_ t ) ) -> ( s C M ) C_ ( t C M ) ) | 
						
							| 32 | 27 31 | fssresd |  |-  ( ( ( ph /\ ( N <_ ( # ` t ) /\ g : ( t C M ) --> R ) ) /\ ( ( 1 ... N ) ~~ s /\ s C_ t ) ) -> ( g |` ( s C M ) ) : ( s C M ) --> R ) | 
						
							| 33 |  | vex |  |-  g e. _V | 
						
							| 34 | 33 | resex |  |-  ( g |` ( s C M ) ) e. _V | 
						
							| 35 |  | feq1 |  |-  ( f = ( g |` ( s C M ) ) -> ( f : ( s C M ) --> R <-> ( g |` ( s C M ) ) : ( s C M ) --> R ) ) | 
						
							| 36 | 35 | anbi2d |  |-  ( f = ( g |` ( s C M ) ) -> ( ( ( # ` s ) = N /\ f : ( s C M ) --> R ) <-> ( ( # ` s ) = N /\ ( g |` ( s C M ) ) : ( s C M ) --> R ) ) ) | 
						
							| 37 | 36 | anbi2d |  |-  ( f = ( g |` ( s C M ) ) -> ( ( ph /\ ( ( # ` s ) = N /\ f : ( s C M ) --> R ) ) <-> ( ph /\ ( ( # ` s ) = N /\ ( g |` ( s C M ) ) : ( s C M ) --> R ) ) ) ) | 
						
							| 38 |  | cnveq |  |-  ( f = ( g |` ( s C M ) ) -> `' f = `' ( g |` ( s C M ) ) ) | 
						
							| 39 | 38 | imaeq1d |  |-  ( f = ( g |` ( s C M ) ) -> ( `' f " { c } ) = ( `' ( g |` ( s C M ) ) " { c } ) ) | 
						
							| 40 |  | cnvresima |  |-  ( `' ( g |` ( s C M ) ) " { c } ) = ( ( `' g " { c } ) i^i ( s C M ) ) | 
						
							| 41 | 39 40 | eqtrdi |  |-  ( f = ( g |` ( s C M ) ) -> ( `' f " { c } ) = ( ( `' g " { c } ) i^i ( s C M ) ) ) | 
						
							| 42 | 41 | sseq2d |  |-  ( f = ( g |` ( s C M ) ) -> ( ( x C M ) C_ ( `' f " { c } ) <-> ( x C M ) C_ ( ( `' g " { c } ) i^i ( s C M ) ) ) ) | 
						
							| 43 | 42 | anbi2d |  |-  ( f = ( g |` ( s C M ) ) -> ( ( ( F ` c ) <_ ( # ` x ) /\ ( x C M ) C_ ( `' f " { c } ) ) <-> ( ( F ` c ) <_ ( # ` x ) /\ ( x C M ) C_ ( ( `' g " { c } ) i^i ( s C M ) ) ) ) ) | 
						
							| 44 | 43 | 2rexbidv |  |-  ( f = ( g |` ( s C M ) ) -> ( E. c e. R E. x e. ~P s ( ( F ` c ) <_ ( # ` x ) /\ ( x C M ) C_ ( `' f " { c } ) ) <-> E. c e. R E. x e. ~P s ( ( F ` c ) <_ ( # ` x ) /\ ( x C M ) C_ ( ( `' g " { c } ) i^i ( s C M ) ) ) ) ) | 
						
							| 45 | 37 44 | imbi12d |  |-  ( f = ( g |` ( s C M ) ) -> ( ( ( ph /\ ( ( # ` s ) = N /\ f : ( s C M ) --> R ) ) -> E. c e. R E. x e. ~P s ( ( F ` c ) <_ ( # ` x ) /\ ( x C M ) C_ ( `' f " { c } ) ) ) <-> ( ( ph /\ ( ( # ` s ) = N /\ ( g |` ( s C M ) ) : ( s C M ) --> R ) ) -> E. c e. R E. x e. ~P s ( ( F ` c ) <_ ( # ` x ) /\ ( x C M ) C_ ( ( `' g " { c } ) i^i ( s C M ) ) ) ) ) ) | 
						
							| 46 | 34 45 6 | vtocl |  |-  ( ( ph /\ ( ( # ` s ) = N /\ ( g |` ( s C M ) ) : ( s C M ) --> R ) ) -> E. c e. R E. x e. ~P s ( ( F ` c ) <_ ( # ` x ) /\ ( x C M ) C_ ( ( `' g " { c } ) i^i ( s C M ) ) ) ) | 
						
							| 47 | 19 26 32 46 | syl12anc |  |-  ( ( ( ph /\ ( N <_ ( # ` t ) /\ g : ( t C M ) --> R ) ) /\ ( ( 1 ... N ) ~~ s /\ s C_ t ) ) -> E. c e. R E. x e. ~P s ( ( F ` c ) <_ ( # ` x ) /\ ( x C M ) C_ ( ( `' g " { c } ) i^i ( s C M ) ) ) ) | 
						
							| 48 |  | sstr |  |-  ( ( x C_ s /\ s C_ t ) -> x C_ t ) | 
						
							| 49 | 48 | expcom |  |-  ( s C_ t -> ( x C_ s -> x C_ t ) ) | 
						
							| 50 | 49 | ad2antll |  |-  ( ( ( ph /\ ( N <_ ( # ` t ) /\ g : ( t C M ) --> R ) ) /\ ( ( 1 ... N ) ~~ s /\ s C_ t ) ) -> ( x C_ s -> x C_ t ) ) | 
						
							| 51 |  | velpw |  |-  ( x e. ~P s <-> x C_ s ) | 
						
							| 52 |  | velpw |  |-  ( x e. ~P t <-> x C_ t ) | 
						
							| 53 | 50 51 52 | 3imtr4g |  |-  ( ( ( ph /\ ( N <_ ( # ` t ) /\ g : ( t C M ) --> R ) ) /\ ( ( 1 ... N ) ~~ s /\ s C_ t ) ) -> ( x e. ~P s -> x e. ~P t ) ) | 
						
							| 54 |  | id |  |-  ( ( x C M ) C_ ( ( `' g " { c } ) i^i ( s C M ) ) -> ( x C M ) C_ ( ( `' g " { c } ) i^i ( s C M ) ) ) | 
						
							| 55 |  | inss1 |  |-  ( ( `' g " { c } ) i^i ( s C M ) ) C_ ( `' g " { c } ) | 
						
							| 56 | 54 55 | sstrdi |  |-  ( ( x C M ) C_ ( ( `' g " { c } ) i^i ( s C M ) ) -> ( x C M ) C_ ( `' g " { c } ) ) | 
						
							| 57 | 56 | a1i |  |-  ( ( ( ph /\ ( N <_ ( # ` t ) /\ g : ( t C M ) --> R ) ) /\ ( ( 1 ... N ) ~~ s /\ s C_ t ) ) -> ( ( x C M ) C_ ( ( `' g " { c } ) i^i ( s C M ) ) -> ( x C M ) C_ ( `' g " { c } ) ) ) | 
						
							| 58 | 57 | anim2d |  |-  ( ( ( ph /\ ( N <_ ( # ` t ) /\ g : ( t C M ) --> R ) ) /\ ( ( 1 ... N ) ~~ s /\ s C_ t ) ) -> ( ( ( F ` c ) <_ ( # ` x ) /\ ( x C M ) C_ ( ( `' g " { c } ) i^i ( s C M ) ) ) -> ( ( F ` c ) <_ ( # ` x ) /\ ( x C M ) C_ ( `' g " { c } ) ) ) ) | 
						
							| 59 | 53 58 | anim12d |  |-  ( ( ( ph /\ ( N <_ ( # ` t ) /\ g : ( t C M ) --> R ) ) /\ ( ( 1 ... N ) ~~ s /\ s C_ t ) ) -> ( ( x e. ~P s /\ ( ( F ` c ) <_ ( # ` x ) /\ ( x C M ) C_ ( ( `' g " { c } ) i^i ( s C M ) ) ) ) -> ( x e. ~P t /\ ( ( F ` c ) <_ ( # ` x ) /\ ( x C M ) C_ ( `' g " { c } ) ) ) ) ) | 
						
							| 60 | 59 | reximdv2 |  |-  ( ( ( ph /\ ( N <_ ( # ` t ) /\ g : ( t C M ) --> R ) ) /\ ( ( 1 ... N ) ~~ s /\ s C_ t ) ) -> ( E. x e. ~P s ( ( F ` c ) <_ ( # ` x ) /\ ( x C M ) C_ ( ( `' g " { c } ) i^i ( s C M ) ) ) -> E. x e. ~P t ( ( F ` c ) <_ ( # ` x ) /\ ( x C M ) C_ ( `' g " { c } ) ) ) ) | 
						
							| 61 | 60 | reximdv |  |-  ( ( ( ph /\ ( N <_ ( # ` t ) /\ g : ( t C M ) --> R ) ) /\ ( ( 1 ... N ) ~~ s /\ s C_ t ) ) -> ( E. c e. R E. x e. ~P s ( ( F ` c ) <_ ( # ` x ) /\ ( x C M ) C_ ( ( `' g " { c } ) i^i ( s C M ) ) ) -> E. c e. R E. x e. ~P t ( ( F ` c ) <_ ( # ` x ) /\ ( x C M ) C_ ( `' g " { c } ) ) ) ) | 
						
							| 62 | 47 61 | mpd |  |-  ( ( ( ph /\ ( N <_ ( # ` t ) /\ g : ( t C M ) --> R ) ) /\ ( ( 1 ... N ) ~~ s /\ s C_ t ) ) -> E. c e. R E. x e. ~P t ( ( F ` c ) <_ ( # ` x ) /\ ( x C M ) C_ ( `' g " { c } ) ) ) | 
						
							| 63 | 18 62 | exlimddv |  |-  ( ( ph /\ ( N <_ ( # ` t ) /\ g : ( t C M ) --> R ) ) -> E. c e. R E. x e. ~P t ( ( F ` c ) <_ ( # ` x ) /\ ( x C M ) C_ ( `' g " { c } ) ) ) | 
						
							| 64 | 1 2 3 4 5 63 | ramub |  |-  ( ph -> ( M Ramsey F ) <_ N ) |