| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rami.c | ⊢ 𝐶  =  ( 𝑎  ∈  V ,  𝑖  ∈  ℕ0  ↦  { 𝑏  ∈  𝒫  𝑎  ∣  ( ♯ ‘ 𝑏 )  =  𝑖 } ) | 
						
							| 2 |  | rami.m | ⊢ ( 𝜑  →  𝑀  ∈  ℕ0 ) | 
						
							| 3 |  | rami.r | ⊢ ( 𝜑  →  𝑅  ∈  𝑉 ) | 
						
							| 4 |  | rami.f | ⊢ ( 𝜑  →  𝐹 : 𝑅 ⟶ ℕ0 ) | 
						
							| 5 |  | rami.x | ⊢ ( 𝜑  →  ( 𝑀  Ramsey  𝐹 )  ∈  ℕ0 ) | 
						
							| 6 |  | rami.s | ⊢ ( 𝜑  →  𝑆  ∈  𝑊 ) | 
						
							| 7 |  | rami.l | ⊢ ( 𝜑  →  ( 𝑀  Ramsey  𝐹 )  ≤  ( ♯ ‘ 𝑆 ) ) | 
						
							| 8 |  | rami.g | ⊢ ( 𝜑  →  𝐺 : ( 𝑆 𝐶 𝑀 ) ⟶ 𝑅 ) | 
						
							| 9 |  | cnveq | ⊢ ( 𝑓  =  𝐺  →  ◡ 𝑓  =  ◡ 𝐺 ) | 
						
							| 10 | 9 | imaeq1d | ⊢ ( 𝑓  =  𝐺  →  ( ◡ 𝑓  “  { 𝑐 } )  =  ( ◡ 𝐺  “  { 𝑐 } ) ) | 
						
							| 11 | 10 | sseq2d | ⊢ ( 𝑓  =  𝐺  →  ( ( 𝑥 𝐶 𝑀 )  ⊆  ( ◡ 𝑓  “  { 𝑐 } )  ↔  ( 𝑥 𝐶 𝑀 )  ⊆  ( ◡ 𝐺  “  { 𝑐 } ) ) ) | 
						
							| 12 | 11 | anbi2d | ⊢ ( 𝑓  =  𝐺  →  ( ( ( 𝐹 ‘ 𝑐 )  ≤  ( ♯ ‘ 𝑥 )  ∧  ( 𝑥 𝐶 𝑀 )  ⊆  ( ◡ 𝑓  “  { 𝑐 } ) )  ↔  ( ( 𝐹 ‘ 𝑐 )  ≤  ( ♯ ‘ 𝑥 )  ∧  ( 𝑥 𝐶 𝑀 )  ⊆  ( ◡ 𝐺  “  { 𝑐 } ) ) ) ) | 
						
							| 13 | 12 | 2rexbidv | ⊢ ( 𝑓  =  𝐺  →  ( ∃ 𝑐  ∈  𝑅 ∃ 𝑥  ∈  𝒫  𝑆 ( ( 𝐹 ‘ 𝑐 )  ≤  ( ♯ ‘ 𝑥 )  ∧  ( 𝑥 𝐶 𝑀 )  ⊆  ( ◡ 𝑓  “  { 𝑐 } ) )  ↔  ∃ 𝑐  ∈  𝑅 ∃ 𝑥  ∈  𝒫  𝑆 ( ( 𝐹 ‘ 𝑐 )  ≤  ( ♯ ‘ 𝑥 )  ∧  ( 𝑥 𝐶 𝑀 )  ⊆  ( ◡ 𝐺  “  { 𝑐 } ) ) ) ) | 
						
							| 14 |  | eqid | ⊢ { 𝑛  ∈  ℕ0  ∣  ∀ 𝑠 ( 𝑛  ≤  ( ♯ ‘ 𝑠 )  →  ∀ 𝑓  ∈  ( 𝑅  ↑m  ( 𝑠 𝐶 𝑀 ) ) ∃ 𝑐  ∈  𝑅 ∃ 𝑥  ∈  𝒫  𝑠 ( ( 𝐹 ‘ 𝑐 )  ≤  ( ♯ ‘ 𝑥 )  ∧  ( 𝑥 𝐶 𝑀 )  ⊆  ( ◡ 𝑓  “  { 𝑐 } ) ) ) }  =  { 𝑛  ∈  ℕ0  ∣  ∀ 𝑠 ( 𝑛  ≤  ( ♯ ‘ 𝑠 )  →  ∀ 𝑓  ∈  ( 𝑅  ↑m  ( 𝑠 𝐶 𝑀 ) ) ∃ 𝑐  ∈  𝑅 ∃ 𝑥  ∈  𝒫  𝑠 ( ( 𝐹 ‘ 𝑐 )  ≤  ( ♯ ‘ 𝑥 )  ∧  ( 𝑥 𝐶 𝑀 )  ⊆  ( ◡ 𝑓  “  { 𝑐 } ) ) ) } | 
						
							| 15 | 1 14 | ramtcl2 | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑅  ∈  𝑉  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  →  ( ( 𝑀  Ramsey  𝐹 )  ∈  ℕ0  ↔  { 𝑛  ∈  ℕ0  ∣  ∀ 𝑠 ( 𝑛  ≤  ( ♯ ‘ 𝑠 )  →  ∀ 𝑓  ∈  ( 𝑅  ↑m  ( 𝑠 𝐶 𝑀 ) ) ∃ 𝑐  ∈  𝑅 ∃ 𝑥  ∈  𝒫  𝑠 ( ( 𝐹 ‘ 𝑐 )  ≤  ( ♯ ‘ 𝑥 )  ∧  ( 𝑥 𝐶 𝑀 )  ⊆  ( ◡ 𝑓  “  { 𝑐 } ) ) ) }  ≠  ∅ ) ) | 
						
							| 16 | 1 14 | ramtcl | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑅  ∈  𝑉  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  →  ( ( 𝑀  Ramsey  𝐹 )  ∈  { 𝑛  ∈  ℕ0  ∣  ∀ 𝑠 ( 𝑛  ≤  ( ♯ ‘ 𝑠 )  →  ∀ 𝑓  ∈  ( 𝑅  ↑m  ( 𝑠 𝐶 𝑀 ) ) ∃ 𝑐  ∈  𝑅 ∃ 𝑥  ∈  𝒫  𝑠 ( ( 𝐹 ‘ 𝑐 )  ≤  ( ♯ ‘ 𝑥 )  ∧  ( 𝑥 𝐶 𝑀 )  ⊆  ( ◡ 𝑓  “  { 𝑐 } ) ) ) }  ↔  { 𝑛  ∈  ℕ0  ∣  ∀ 𝑠 ( 𝑛  ≤  ( ♯ ‘ 𝑠 )  →  ∀ 𝑓  ∈  ( 𝑅  ↑m  ( 𝑠 𝐶 𝑀 ) ) ∃ 𝑐  ∈  𝑅 ∃ 𝑥  ∈  𝒫  𝑠 ( ( 𝐹 ‘ 𝑐 )  ≤  ( ♯ ‘ 𝑥 )  ∧  ( 𝑥 𝐶 𝑀 )  ⊆  ( ◡ 𝑓  “  { 𝑐 } ) ) ) }  ≠  ∅ ) ) | 
						
							| 17 | 15 16 | bitr4d | ⊢ ( ( 𝑀  ∈  ℕ0  ∧  𝑅  ∈  𝑉  ∧  𝐹 : 𝑅 ⟶ ℕ0 )  →  ( ( 𝑀  Ramsey  𝐹 )  ∈  ℕ0  ↔  ( 𝑀  Ramsey  𝐹 )  ∈  { 𝑛  ∈  ℕ0  ∣  ∀ 𝑠 ( 𝑛  ≤  ( ♯ ‘ 𝑠 )  →  ∀ 𝑓  ∈  ( 𝑅  ↑m  ( 𝑠 𝐶 𝑀 ) ) ∃ 𝑐  ∈  𝑅 ∃ 𝑥  ∈  𝒫  𝑠 ( ( 𝐹 ‘ 𝑐 )  ≤  ( ♯ ‘ 𝑥 )  ∧  ( 𝑥 𝐶 𝑀 )  ⊆  ( ◡ 𝑓  “  { 𝑐 } ) ) ) } ) ) | 
						
							| 18 | 2 3 4 17 | syl3anc | ⊢ ( 𝜑  →  ( ( 𝑀  Ramsey  𝐹 )  ∈  ℕ0  ↔  ( 𝑀  Ramsey  𝐹 )  ∈  { 𝑛  ∈  ℕ0  ∣  ∀ 𝑠 ( 𝑛  ≤  ( ♯ ‘ 𝑠 )  →  ∀ 𝑓  ∈  ( 𝑅  ↑m  ( 𝑠 𝐶 𝑀 ) ) ∃ 𝑐  ∈  𝑅 ∃ 𝑥  ∈  𝒫  𝑠 ( ( 𝐹 ‘ 𝑐 )  ≤  ( ♯ ‘ 𝑥 )  ∧  ( 𝑥 𝐶 𝑀 )  ⊆  ( ◡ 𝑓  “  { 𝑐 } ) ) ) } ) ) | 
						
							| 19 | 5 18 | mpbid | ⊢ ( 𝜑  →  ( 𝑀  Ramsey  𝐹 )  ∈  { 𝑛  ∈  ℕ0  ∣  ∀ 𝑠 ( 𝑛  ≤  ( ♯ ‘ 𝑠 )  →  ∀ 𝑓  ∈  ( 𝑅  ↑m  ( 𝑠 𝐶 𝑀 ) ) ∃ 𝑐  ∈  𝑅 ∃ 𝑥  ∈  𝒫  𝑠 ( ( 𝐹 ‘ 𝑐 )  ≤  ( ♯ ‘ 𝑥 )  ∧  ( 𝑥 𝐶 𝑀 )  ⊆  ( ◡ 𝑓  “  { 𝑐 } ) ) ) } ) | 
						
							| 20 |  | breq1 | ⊢ ( 𝑛  =  ( 𝑀  Ramsey  𝐹 )  →  ( 𝑛  ≤  ( ♯ ‘ 𝑠 )  ↔  ( 𝑀  Ramsey  𝐹 )  ≤  ( ♯ ‘ 𝑠 ) ) ) | 
						
							| 21 | 20 | imbi1d | ⊢ ( 𝑛  =  ( 𝑀  Ramsey  𝐹 )  →  ( ( 𝑛  ≤  ( ♯ ‘ 𝑠 )  →  ∀ 𝑓  ∈  ( 𝑅  ↑m  ( 𝑠 𝐶 𝑀 ) ) ∃ 𝑐  ∈  𝑅 ∃ 𝑥  ∈  𝒫  𝑠 ( ( 𝐹 ‘ 𝑐 )  ≤  ( ♯ ‘ 𝑥 )  ∧  ( 𝑥 𝐶 𝑀 )  ⊆  ( ◡ 𝑓  “  { 𝑐 } ) ) )  ↔  ( ( 𝑀  Ramsey  𝐹 )  ≤  ( ♯ ‘ 𝑠 )  →  ∀ 𝑓  ∈  ( 𝑅  ↑m  ( 𝑠 𝐶 𝑀 ) ) ∃ 𝑐  ∈  𝑅 ∃ 𝑥  ∈  𝒫  𝑠 ( ( 𝐹 ‘ 𝑐 )  ≤  ( ♯ ‘ 𝑥 )  ∧  ( 𝑥 𝐶 𝑀 )  ⊆  ( ◡ 𝑓  “  { 𝑐 } ) ) ) ) ) | 
						
							| 22 | 21 | albidv | ⊢ ( 𝑛  =  ( 𝑀  Ramsey  𝐹 )  →  ( ∀ 𝑠 ( 𝑛  ≤  ( ♯ ‘ 𝑠 )  →  ∀ 𝑓  ∈  ( 𝑅  ↑m  ( 𝑠 𝐶 𝑀 ) ) ∃ 𝑐  ∈  𝑅 ∃ 𝑥  ∈  𝒫  𝑠 ( ( 𝐹 ‘ 𝑐 )  ≤  ( ♯ ‘ 𝑥 )  ∧  ( 𝑥 𝐶 𝑀 )  ⊆  ( ◡ 𝑓  “  { 𝑐 } ) ) )  ↔  ∀ 𝑠 ( ( 𝑀  Ramsey  𝐹 )  ≤  ( ♯ ‘ 𝑠 )  →  ∀ 𝑓  ∈  ( 𝑅  ↑m  ( 𝑠 𝐶 𝑀 ) ) ∃ 𝑐  ∈  𝑅 ∃ 𝑥  ∈  𝒫  𝑠 ( ( 𝐹 ‘ 𝑐 )  ≤  ( ♯ ‘ 𝑥 )  ∧  ( 𝑥 𝐶 𝑀 )  ⊆  ( ◡ 𝑓  “  { 𝑐 } ) ) ) ) ) | 
						
							| 23 | 22 | elrab | ⊢ ( ( 𝑀  Ramsey  𝐹 )  ∈  { 𝑛  ∈  ℕ0  ∣  ∀ 𝑠 ( 𝑛  ≤  ( ♯ ‘ 𝑠 )  →  ∀ 𝑓  ∈  ( 𝑅  ↑m  ( 𝑠 𝐶 𝑀 ) ) ∃ 𝑐  ∈  𝑅 ∃ 𝑥  ∈  𝒫  𝑠 ( ( 𝐹 ‘ 𝑐 )  ≤  ( ♯ ‘ 𝑥 )  ∧  ( 𝑥 𝐶 𝑀 )  ⊆  ( ◡ 𝑓  “  { 𝑐 } ) ) ) }  ↔  ( ( 𝑀  Ramsey  𝐹 )  ∈  ℕ0  ∧  ∀ 𝑠 ( ( 𝑀  Ramsey  𝐹 )  ≤  ( ♯ ‘ 𝑠 )  →  ∀ 𝑓  ∈  ( 𝑅  ↑m  ( 𝑠 𝐶 𝑀 ) ) ∃ 𝑐  ∈  𝑅 ∃ 𝑥  ∈  𝒫  𝑠 ( ( 𝐹 ‘ 𝑐 )  ≤  ( ♯ ‘ 𝑥 )  ∧  ( 𝑥 𝐶 𝑀 )  ⊆  ( ◡ 𝑓  “  { 𝑐 } ) ) ) ) ) | 
						
							| 24 | 23 | simprbi | ⊢ ( ( 𝑀  Ramsey  𝐹 )  ∈  { 𝑛  ∈  ℕ0  ∣  ∀ 𝑠 ( 𝑛  ≤  ( ♯ ‘ 𝑠 )  →  ∀ 𝑓  ∈  ( 𝑅  ↑m  ( 𝑠 𝐶 𝑀 ) ) ∃ 𝑐  ∈  𝑅 ∃ 𝑥  ∈  𝒫  𝑠 ( ( 𝐹 ‘ 𝑐 )  ≤  ( ♯ ‘ 𝑥 )  ∧  ( 𝑥 𝐶 𝑀 )  ⊆  ( ◡ 𝑓  “  { 𝑐 } ) ) ) }  →  ∀ 𝑠 ( ( 𝑀  Ramsey  𝐹 )  ≤  ( ♯ ‘ 𝑠 )  →  ∀ 𝑓  ∈  ( 𝑅  ↑m  ( 𝑠 𝐶 𝑀 ) ) ∃ 𝑐  ∈  𝑅 ∃ 𝑥  ∈  𝒫  𝑠 ( ( 𝐹 ‘ 𝑐 )  ≤  ( ♯ ‘ 𝑥 )  ∧  ( 𝑥 𝐶 𝑀 )  ⊆  ( ◡ 𝑓  “  { 𝑐 } ) ) ) ) | 
						
							| 25 | 19 24 | syl | ⊢ ( 𝜑  →  ∀ 𝑠 ( ( 𝑀  Ramsey  𝐹 )  ≤  ( ♯ ‘ 𝑠 )  →  ∀ 𝑓  ∈  ( 𝑅  ↑m  ( 𝑠 𝐶 𝑀 ) ) ∃ 𝑐  ∈  𝑅 ∃ 𝑥  ∈  𝒫  𝑠 ( ( 𝐹 ‘ 𝑐 )  ≤  ( ♯ ‘ 𝑥 )  ∧  ( 𝑥 𝐶 𝑀 )  ⊆  ( ◡ 𝑓  “  { 𝑐 } ) ) ) ) | 
						
							| 26 |  | fveq2 | ⊢ ( 𝑠  =  𝑆  →  ( ♯ ‘ 𝑠 )  =  ( ♯ ‘ 𝑆 ) ) | 
						
							| 27 | 26 | breq2d | ⊢ ( 𝑠  =  𝑆  →  ( ( 𝑀  Ramsey  𝐹 )  ≤  ( ♯ ‘ 𝑠 )  ↔  ( 𝑀  Ramsey  𝐹 )  ≤  ( ♯ ‘ 𝑆 ) ) ) | 
						
							| 28 |  | oveq1 | ⊢ ( 𝑠  =  𝑆  →  ( 𝑠 𝐶 𝑀 )  =  ( 𝑆 𝐶 𝑀 ) ) | 
						
							| 29 | 28 | oveq2d | ⊢ ( 𝑠  =  𝑆  →  ( 𝑅  ↑m  ( 𝑠 𝐶 𝑀 ) )  =  ( 𝑅  ↑m  ( 𝑆 𝐶 𝑀 ) ) ) | 
						
							| 30 |  | pweq | ⊢ ( 𝑠  =  𝑆  →  𝒫  𝑠  =  𝒫  𝑆 ) | 
						
							| 31 | 30 | rexeqdv | ⊢ ( 𝑠  =  𝑆  →  ( ∃ 𝑥  ∈  𝒫  𝑠 ( ( 𝐹 ‘ 𝑐 )  ≤  ( ♯ ‘ 𝑥 )  ∧  ( 𝑥 𝐶 𝑀 )  ⊆  ( ◡ 𝑓  “  { 𝑐 } ) )  ↔  ∃ 𝑥  ∈  𝒫  𝑆 ( ( 𝐹 ‘ 𝑐 )  ≤  ( ♯ ‘ 𝑥 )  ∧  ( 𝑥 𝐶 𝑀 )  ⊆  ( ◡ 𝑓  “  { 𝑐 } ) ) ) ) | 
						
							| 32 | 31 | rexbidv | ⊢ ( 𝑠  =  𝑆  →  ( ∃ 𝑐  ∈  𝑅 ∃ 𝑥  ∈  𝒫  𝑠 ( ( 𝐹 ‘ 𝑐 )  ≤  ( ♯ ‘ 𝑥 )  ∧  ( 𝑥 𝐶 𝑀 )  ⊆  ( ◡ 𝑓  “  { 𝑐 } ) )  ↔  ∃ 𝑐  ∈  𝑅 ∃ 𝑥  ∈  𝒫  𝑆 ( ( 𝐹 ‘ 𝑐 )  ≤  ( ♯ ‘ 𝑥 )  ∧  ( 𝑥 𝐶 𝑀 )  ⊆  ( ◡ 𝑓  “  { 𝑐 } ) ) ) ) | 
						
							| 33 | 29 32 | raleqbidv | ⊢ ( 𝑠  =  𝑆  →  ( ∀ 𝑓  ∈  ( 𝑅  ↑m  ( 𝑠 𝐶 𝑀 ) ) ∃ 𝑐  ∈  𝑅 ∃ 𝑥  ∈  𝒫  𝑠 ( ( 𝐹 ‘ 𝑐 )  ≤  ( ♯ ‘ 𝑥 )  ∧  ( 𝑥 𝐶 𝑀 )  ⊆  ( ◡ 𝑓  “  { 𝑐 } ) )  ↔  ∀ 𝑓  ∈  ( 𝑅  ↑m  ( 𝑆 𝐶 𝑀 ) ) ∃ 𝑐  ∈  𝑅 ∃ 𝑥  ∈  𝒫  𝑆 ( ( 𝐹 ‘ 𝑐 )  ≤  ( ♯ ‘ 𝑥 )  ∧  ( 𝑥 𝐶 𝑀 )  ⊆  ( ◡ 𝑓  “  { 𝑐 } ) ) ) ) | 
						
							| 34 | 27 33 | imbi12d | ⊢ ( 𝑠  =  𝑆  →  ( ( ( 𝑀  Ramsey  𝐹 )  ≤  ( ♯ ‘ 𝑠 )  →  ∀ 𝑓  ∈  ( 𝑅  ↑m  ( 𝑠 𝐶 𝑀 ) ) ∃ 𝑐  ∈  𝑅 ∃ 𝑥  ∈  𝒫  𝑠 ( ( 𝐹 ‘ 𝑐 )  ≤  ( ♯ ‘ 𝑥 )  ∧  ( 𝑥 𝐶 𝑀 )  ⊆  ( ◡ 𝑓  “  { 𝑐 } ) ) )  ↔  ( ( 𝑀  Ramsey  𝐹 )  ≤  ( ♯ ‘ 𝑆 )  →  ∀ 𝑓  ∈  ( 𝑅  ↑m  ( 𝑆 𝐶 𝑀 ) ) ∃ 𝑐  ∈  𝑅 ∃ 𝑥  ∈  𝒫  𝑆 ( ( 𝐹 ‘ 𝑐 )  ≤  ( ♯ ‘ 𝑥 )  ∧  ( 𝑥 𝐶 𝑀 )  ⊆  ( ◡ 𝑓  “  { 𝑐 } ) ) ) ) ) | 
						
							| 35 | 34 | spcgv | ⊢ ( 𝑆  ∈  𝑊  →  ( ∀ 𝑠 ( ( 𝑀  Ramsey  𝐹 )  ≤  ( ♯ ‘ 𝑠 )  →  ∀ 𝑓  ∈  ( 𝑅  ↑m  ( 𝑠 𝐶 𝑀 ) ) ∃ 𝑐  ∈  𝑅 ∃ 𝑥  ∈  𝒫  𝑠 ( ( 𝐹 ‘ 𝑐 )  ≤  ( ♯ ‘ 𝑥 )  ∧  ( 𝑥 𝐶 𝑀 )  ⊆  ( ◡ 𝑓  “  { 𝑐 } ) ) )  →  ( ( 𝑀  Ramsey  𝐹 )  ≤  ( ♯ ‘ 𝑆 )  →  ∀ 𝑓  ∈  ( 𝑅  ↑m  ( 𝑆 𝐶 𝑀 ) ) ∃ 𝑐  ∈  𝑅 ∃ 𝑥  ∈  𝒫  𝑆 ( ( 𝐹 ‘ 𝑐 )  ≤  ( ♯ ‘ 𝑥 )  ∧  ( 𝑥 𝐶 𝑀 )  ⊆  ( ◡ 𝑓  “  { 𝑐 } ) ) ) ) ) | 
						
							| 36 | 6 25 7 35 | syl3c | ⊢ ( 𝜑  →  ∀ 𝑓  ∈  ( 𝑅  ↑m  ( 𝑆 𝐶 𝑀 ) ) ∃ 𝑐  ∈  𝑅 ∃ 𝑥  ∈  𝒫  𝑆 ( ( 𝐹 ‘ 𝑐 )  ≤  ( ♯ ‘ 𝑥 )  ∧  ( 𝑥 𝐶 𝑀 )  ⊆  ( ◡ 𝑓  “  { 𝑐 } ) ) ) | 
						
							| 37 |  | ovex | ⊢ ( 𝑆 𝐶 𝑀 )  ∈  V | 
						
							| 38 |  | elmapg | ⊢ ( ( 𝑅  ∈  𝑉  ∧  ( 𝑆 𝐶 𝑀 )  ∈  V )  →  ( 𝐺  ∈  ( 𝑅  ↑m  ( 𝑆 𝐶 𝑀 ) )  ↔  𝐺 : ( 𝑆 𝐶 𝑀 ) ⟶ 𝑅 ) ) | 
						
							| 39 | 3 37 38 | sylancl | ⊢ ( 𝜑  →  ( 𝐺  ∈  ( 𝑅  ↑m  ( 𝑆 𝐶 𝑀 ) )  ↔  𝐺 : ( 𝑆 𝐶 𝑀 ) ⟶ 𝑅 ) ) | 
						
							| 40 | 8 39 | mpbird | ⊢ ( 𝜑  →  𝐺  ∈  ( 𝑅  ↑m  ( 𝑆 𝐶 𝑀 ) ) ) | 
						
							| 41 | 13 36 40 | rspcdva | ⊢ ( 𝜑  →  ∃ 𝑐  ∈  𝑅 ∃ 𝑥  ∈  𝒫  𝑆 ( ( 𝐹 ‘ 𝑐 )  ≤  ( ♯ ‘ 𝑥 )  ∧  ( 𝑥 𝐶 𝑀 )  ⊆  ( ◡ 𝐺  “  { 𝑐 } ) ) ) |