Metamath Proof Explorer


Theorem 0ramcl

Description: Lemma for ramcl : Existence of the Ramsey number when M = 0 . (Contributed by Mario Carneiro, 23-Apr-2015)

Ref Expression
Assertion 0ramcl RFinF:R00RamseyF0

Proof

Step Hyp Ref Expression
1 ffn F:R0FFnR
2 dffn4 FFnRF:RontoranF
3 1 2 sylib F:R0F:RontoranF
4 3 ad2antlr RFinF:R0R=F:RontoranF
5 foeq2 R=F:RontoranFF:ontoranF
6 5 adantl RFinF:R0R=F:RontoranFF:ontoranF
7 4 6 mpbid RFinF:R0R=F:ontoranF
8 fo00 F:ontoranFF=ranF=
9 8 simplbi F:ontoranFF=
10 7 9 syl RFinF:R0R=F=
11 10 oveq2d RFinF:R0R=0RamseyF=0Ramsey
12 0nn0 00
13 ram0 000Ramsey=0
14 12 13 ax-mp 0Ramsey=0
15 14 12 eqeltri 0Ramsey0
16 11 15 eqeltrdi RFinF:R0R=0RamseyF0
17 0ram2 RFinRF:R00RamseyF=supranF<
18 frn F:R0ranF0
19 18 3ad2ant3 RFinRF:R0ranF0
20 nn0ssz 0
21 19 20 sstrdi RFinRF:R0ranF
22 fdm F:R0domF=R
23 22 3ad2ant3 RFinRF:R0domF=R
24 simp2 RFinRF:R0R
25 23 24 eqnetrd RFinRF:R0domF
26 dm0rn0 domF=ranF=
27 26 necon3bii domFranF
28 25 27 sylib RFinRF:R0ranF
29 nn0ssre 0
30 19 29 sstrdi RFinRF:R0ranF
31 simp1 RFinRF:R0RFin
32 3 3ad2ant3 RFinRF:R0F:RontoranF
33 fofi RFinF:RontoranFranFFin
34 31 32 33 syl2anc RFinRF:R0ranFFin
35 fimaxre ranFranFFinranFxranFyranFyx
36 30 34 28 35 syl3anc RFinRF:R0xranFyranFyx
37 ssrexv ranFxranFyranFyxxyranFyx
38 21 36 37 sylc RFinRF:R0xyranFyx
39 suprzcl2 ranFranFxyranFyxsupranF<ranF
40 21 28 38 39 syl3anc RFinRF:R0supranF<ranF
41 19 40 sseldd RFinRF:R0supranF<0
42 17 41 eqeltrd RFinRF:R00RamseyF0
43 42 3expa RFinRF:R00RamseyF0
44 43 an32s RFinF:R0R0RamseyF0
45 16 44 pm2.61dane RFinF:R00RamseyF0