Metamath Proof Explorer


Theorem ramz2

Description: The Ramsey number when F has value zero for some color C . (Contributed by Mario Carneiro, 22-Apr-2015)

Ref Expression
Assertion ramz2 MRVF:R0CRFC=0MRamseyF=0

Proof

Step Hyp Ref Expression
1 eqid aV,i0b𝒫a|b=i=aV,i0b𝒫a|b=i
2 simpl1 MRVF:R0CRFC=0M
3 2 nnnn0d MRVF:R0CRFC=0M0
4 simpl2 MRVF:R0CRFC=0RV
5 simpl3 MRVF:R0CRFC=0F:R0
6 0nn0 00
7 6 a1i MRVF:R0CRFC=000
8 simplrl MRVF:R0CRFC=00sf:saV,i0b𝒫a|b=iMRCR
9 0elpw 𝒫s
10 9 a1i MRVF:R0CRFC=00sf:saV,i0b𝒫a|b=iMR𝒫s
11 simplrr MRVF:R0CRFC=00sf:saV,i0b𝒫a|b=iMRFC=0
12 0le0 00
13 11 12 eqbrtrdi MRVF:R0CRFC=00sf:saV,i0b𝒫a|b=iMRFC0
14 simpll1 MRVF:R0CRFC=00sf:saV,i0b𝒫a|b=iMRM
15 1 0hashbc MaV,i0b𝒫a|b=iM=
16 14 15 syl MRVF:R0CRFC=00sf:saV,i0b𝒫a|b=iMRaV,i0b𝒫a|b=iM=
17 0ss f-1C
18 16 17 eqsstrdi MRVF:R0CRFC=00sf:saV,i0b𝒫a|b=iMRaV,i0b𝒫a|b=iMf-1C
19 fveq2 c=CFc=FC
20 19 breq1d c=CFcxFCx
21 sneq c=Cc=C
22 21 imaeq2d c=Cf-1c=f-1C
23 22 sseq2d c=CxaV,i0b𝒫a|b=iMf-1cxaV,i0b𝒫a|b=iMf-1C
24 20 23 anbi12d c=CFcxxaV,i0b𝒫a|b=iMf-1cFCxxaV,i0b𝒫a|b=iMf-1C
25 fveq2 x=x=
26 hash0 =0
27 25 26 eqtrdi x=x=0
28 27 breq2d x=FCxFC0
29 oveq1 x=xaV,i0b𝒫a|b=iM=aV,i0b𝒫a|b=iM
30 29 sseq1d x=xaV,i0b𝒫a|b=iMf-1CaV,i0b𝒫a|b=iMf-1C
31 28 30 anbi12d x=FCxxaV,i0b𝒫a|b=iMf-1CFC0aV,i0b𝒫a|b=iMf-1C
32 24 31 rspc2ev CR𝒫sFC0aV,i0b𝒫a|b=iMf-1CcRx𝒫sFcxxaV,i0b𝒫a|b=iMf-1c
33 8 10 13 18 32 syl112anc MRVF:R0CRFC=00sf:saV,i0b𝒫a|b=iMRcRx𝒫sFcxxaV,i0b𝒫a|b=iMf-1c
34 1 3 4 5 7 33 ramub MRVF:R0CRFC=0MRamseyF0
35 ramubcl M0RVF:R000MRamseyF0MRamseyF0
36 3 4 5 7 34 35 syl32anc MRVF:R0CRFC=0MRamseyF0
37 nn0le0eq0 MRamseyF0MRamseyF0MRamseyF=0
38 36 37 syl MRVF:R0CRFC=0MRamseyF0MRamseyF=0
39 34 38 mpbid MRVF:R0CRFC=0MRamseyF=0