Metamath Proof Explorer


Theorem ramubcl

Description: If the Ramsey number is upper bounded, then it is an integer. (Contributed by Mario Carneiro, 20-Apr-2015)

Ref Expression
Assertion ramubcl M0RVF:R0A0MRamseyFAMRamseyF0

Proof

Step Hyp Ref Expression
1 nn0re A0A
2 ltpnf AA<+∞
3 rexr AA*
4 pnfxr +∞*
5 xrltnle A*+∞*A<+∞¬+∞A
6 3 4 5 sylancl AA<+∞¬+∞A
7 2 6 mpbid A¬+∞A
8 1 7 syl A0¬+∞A
9 8 ad2antrl M0RVF:R0A0MRamseyFA¬+∞A
10 simprr M0RVF:R0A0MRamseyFAMRamseyFA
11 breq1 MRamseyF=+∞MRamseyFA+∞A
12 10 11 syl5ibcom M0RVF:R0A0MRamseyFAMRamseyF=+∞+∞A
13 9 12 mtod M0RVF:R0A0MRamseyFA¬MRamseyF=+∞
14 elsni MRamseyF+∞MRamseyF=+∞
15 13 14 nsyl M0RVF:R0A0MRamseyFA¬MRamseyF+∞
16 ramcl2 M0RVF:R0MRamseyF0+∞
17 16 adantr M0RVF:R0A0MRamseyFAMRamseyF0+∞
18 elun MRamseyF0+∞MRamseyF0MRamseyF+∞
19 17 18 sylib M0RVF:R0A0MRamseyFAMRamseyF0MRamseyF+∞
20 19 ord M0RVF:R0A0MRamseyFA¬MRamseyF0MRamseyF+∞
21 15 20 mt3d M0RVF:R0A0MRamseyFAMRamseyF0