| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid |  |-  ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) = ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) | 
						
							| 2 |  | simpl1 |  |-  ( ( ( M e. NN /\ R e. V /\ F : R --> NN0 ) /\ ( C e. R /\ ( F ` C ) = 0 ) ) -> M e. NN ) | 
						
							| 3 | 2 | nnnn0d |  |-  ( ( ( M e. NN /\ R e. V /\ F : R --> NN0 ) /\ ( C e. R /\ ( F ` C ) = 0 ) ) -> M e. NN0 ) | 
						
							| 4 |  | simpl2 |  |-  ( ( ( M e. NN /\ R e. V /\ F : R --> NN0 ) /\ ( C e. R /\ ( F ` C ) = 0 ) ) -> R e. V ) | 
						
							| 5 |  | simpl3 |  |-  ( ( ( M e. NN /\ R e. V /\ F : R --> NN0 ) /\ ( C e. R /\ ( F ` C ) = 0 ) ) -> F : R --> NN0 ) | 
						
							| 6 |  | 0nn0 |  |-  0 e. NN0 | 
						
							| 7 | 6 | a1i |  |-  ( ( ( M e. NN /\ R e. V /\ F : R --> NN0 ) /\ ( C e. R /\ ( F ` C ) = 0 ) ) -> 0 e. NN0 ) | 
						
							| 8 |  | simplrl |  |-  ( ( ( ( M e. NN /\ R e. V /\ F : R --> NN0 ) /\ ( C e. R /\ ( F ` C ) = 0 ) ) /\ ( 0 <_ ( # ` s ) /\ f : ( s ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) M ) --> R ) ) -> C e. R ) | 
						
							| 9 |  | 0elpw |  |-  (/) e. ~P s | 
						
							| 10 | 9 | a1i |  |-  ( ( ( ( M e. NN /\ R e. V /\ F : R --> NN0 ) /\ ( C e. R /\ ( F ` C ) = 0 ) ) /\ ( 0 <_ ( # ` s ) /\ f : ( s ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) M ) --> R ) ) -> (/) e. ~P s ) | 
						
							| 11 |  | simplrr |  |-  ( ( ( ( M e. NN /\ R e. V /\ F : R --> NN0 ) /\ ( C e. R /\ ( F ` C ) = 0 ) ) /\ ( 0 <_ ( # ` s ) /\ f : ( s ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) M ) --> R ) ) -> ( F ` C ) = 0 ) | 
						
							| 12 |  | 0le0 |  |-  0 <_ 0 | 
						
							| 13 | 11 12 | eqbrtrdi |  |-  ( ( ( ( M e. NN /\ R e. V /\ F : R --> NN0 ) /\ ( C e. R /\ ( F ` C ) = 0 ) ) /\ ( 0 <_ ( # ` s ) /\ f : ( s ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) M ) --> R ) ) -> ( F ` C ) <_ 0 ) | 
						
							| 14 |  | simpll1 |  |-  ( ( ( ( M e. NN /\ R e. V /\ F : R --> NN0 ) /\ ( C e. R /\ ( F ` C ) = 0 ) ) /\ ( 0 <_ ( # ` s ) /\ f : ( s ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) M ) --> R ) ) -> M e. NN ) | 
						
							| 15 | 1 | 0hashbc |  |-  ( M e. NN -> ( (/) ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) M ) = (/) ) | 
						
							| 16 | 14 15 | syl |  |-  ( ( ( ( M e. NN /\ R e. V /\ F : R --> NN0 ) /\ ( C e. R /\ ( F ` C ) = 0 ) ) /\ ( 0 <_ ( # ` s ) /\ f : ( s ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) M ) --> R ) ) -> ( (/) ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) M ) = (/) ) | 
						
							| 17 |  | 0ss |  |-  (/) C_ ( `' f " { C } ) | 
						
							| 18 | 16 17 | eqsstrdi |  |-  ( ( ( ( M e. NN /\ R e. V /\ F : R --> NN0 ) /\ ( C e. R /\ ( F ` C ) = 0 ) ) /\ ( 0 <_ ( # ` s ) /\ f : ( s ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) M ) --> R ) ) -> ( (/) ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) M ) C_ ( `' f " { C } ) ) | 
						
							| 19 |  | fveq2 |  |-  ( c = C -> ( F ` c ) = ( F ` C ) ) | 
						
							| 20 | 19 | breq1d |  |-  ( c = C -> ( ( F ` c ) <_ ( # ` x ) <-> ( F ` C ) <_ ( # ` x ) ) ) | 
						
							| 21 |  | sneq |  |-  ( c = C -> { c } = { C } ) | 
						
							| 22 | 21 | imaeq2d |  |-  ( c = C -> ( `' f " { c } ) = ( `' f " { C } ) ) | 
						
							| 23 | 22 | sseq2d |  |-  ( c = C -> ( ( x ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) M ) C_ ( `' f " { c } ) <-> ( x ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) M ) C_ ( `' f " { C } ) ) ) | 
						
							| 24 | 20 23 | anbi12d |  |-  ( c = C -> ( ( ( F ` c ) <_ ( # ` x ) /\ ( x ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) M ) C_ ( `' f " { c } ) ) <-> ( ( F ` C ) <_ ( # ` x ) /\ ( x ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) M ) C_ ( `' f " { C } ) ) ) ) | 
						
							| 25 |  | fveq2 |  |-  ( x = (/) -> ( # ` x ) = ( # ` (/) ) ) | 
						
							| 26 |  | hash0 |  |-  ( # ` (/) ) = 0 | 
						
							| 27 | 25 26 | eqtrdi |  |-  ( x = (/) -> ( # ` x ) = 0 ) | 
						
							| 28 | 27 | breq2d |  |-  ( x = (/) -> ( ( F ` C ) <_ ( # ` x ) <-> ( F ` C ) <_ 0 ) ) | 
						
							| 29 |  | oveq1 |  |-  ( x = (/) -> ( x ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) M ) = ( (/) ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) M ) ) | 
						
							| 30 | 29 | sseq1d |  |-  ( x = (/) -> ( ( x ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) M ) C_ ( `' f " { C } ) <-> ( (/) ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) M ) C_ ( `' f " { C } ) ) ) | 
						
							| 31 | 28 30 | anbi12d |  |-  ( x = (/) -> ( ( ( F ` C ) <_ ( # ` x ) /\ ( x ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) M ) C_ ( `' f " { C } ) ) <-> ( ( F ` C ) <_ 0 /\ ( (/) ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) M ) C_ ( `' f " { C } ) ) ) ) | 
						
							| 32 | 24 31 | rspc2ev |  |-  ( ( C e. R /\ (/) e. ~P s /\ ( ( F ` C ) <_ 0 /\ ( (/) ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) M ) C_ ( `' f " { C } ) ) ) -> E. c e. R E. x e. ~P s ( ( F ` c ) <_ ( # ` x ) /\ ( x ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) M ) C_ ( `' f " { c } ) ) ) | 
						
							| 33 | 8 10 13 18 32 | syl112anc |  |-  ( ( ( ( M e. NN /\ R e. V /\ F : R --> NN0 ) /\ ( C e. R /\ ( F ` C ) = 0 ) ) /\ ( 0 <_ ( # ` s ) /\ f : ( s ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) M ) --> R ) ) -> E. c e. R E. x e. ~P s ( ( F ` c ) <_ ( # ` x ) /\ ( x ( a e. _V , i e. NN0 |-> { b e. ~P a | ( # ` b ) = i } ) M ) C_ ( `' f " { c } ) ) ) | 
						
							| 34 | 1 3 4 5 7 33 | ramub |  |-  ( ( ( M e. NN /\ R e. V /\ F : R --> NN0 ) /\ ( C e. R /\ ( F ` C ) = 0 ) ) -> ( M Ramsey F ) <_ 0 ) | 
						
							| 35 |  | ramubcl |  |-  ( ( ( M e. NN0 /\ R e. V /\ F : R --> NN0 ) /\ ( 0 e. NN0 /\ ( M Ramsey F ) <_ 0 ) ) -> ( M Ramsey F ) e. NN0 ) | 
						
							| 36 | 3 4 5 7 34 35 | syl32anc |  |-  ( ( ( M e. NN /\ R e. V /\ F : R --> NN0 ) /\ ( C e. R /\ ( F ` C ) = 0 ) ) -> ( M Ramsey F ) e. NN0 ) | 
						
							| 37 |  | nn0le0eq0 |  |-  ( ( M Ramsey F ) e. NN0 -> ( ( M Ramsey F ) <_ 0 <-> ( M Ramsey F ) = 0 ) ) | 
						
							| 38 | 36 37 | syl |  |-  ( ( ( M e. NN /\ R e. V /\ F : R --> NN0 ) /\ ( C e. R /\ ( F ` C ) = 0 ) ) -> ( ( M Ramsey F ) <_ 0 <-> ( M Ramsey F ) = 0 ) ) | 
						
							| 39 | 34 38 | mpbid |  |-  ( ( ( M e. NN /\ R e. V /\ F : R --> NN0 ) /\ ( C e. R /\ ( F ` C ) = 0 ) ) -> ( M Ramsey F ) = 0 ) |