Metamath Proof Explorer


Theorem 0ram2

Description: The Ramsey number when M = 0 . (Contributed by Mario Carneiro, 22-Apr-2015)

Ref Expression
Assertion 0ram2 RFinRF:R00RamseyF=supranF<

Proof

Step Hyp Ref Expression
1 frn F:R0ranF0
2 1 3ad2ant3 RFinRF:R0ranF0
3 nn0ssz 0
4 2 3 sstrdi RFinRF:R0ranF
5 nn0ssre 0
6 2 5 sstrdi RFinRF:R0ranF
7 simp1 RFinRF:R0RFin
8 ffn F:R0FFnR
9 8 3ad2ant3 RFinRF:R0FFnR
10 dffn4 FFnRF:RontoranF
11 9 10 sylib RFinRF:R0F:RontoranF
12 fofi RFinF:RontoranFranFFin
13 7 11 12 syl2anc RFinRF:R0ranFFin
14 fdm F:R0domF=R
15 14 3ad2ant3 RFinRF:R0domF=R
16 simp2 RFinRF:R0R
17 15 16 eqnetrd RFinRF:R0domF
18 dm0rn0 domF=ranF=
19 18 necon3bii domFranF
20 17 19 sylib RFinRF:R0ranF
21 fimaxre ranFranFFinranFxranFyranFyx
22 6 13 20 21 syl3anc RFinRF:R0xranFyranFyx
23 ssrexv ranFxranFyranFyxxyranFyx
24 4 22 23 sylc RFinRF:R0xyranFyx
25 0ram RFinRF:R0xyranFyx0RamseyF=supranF<
26 24 25 mpdan RFinRF:R00RamseyF=supranF<