Metamath Proof Explorer


Theorem 0ram2

Description: The Ramsey number when M = 0 . (Contributed by Mario Carneiro, 22-Apr-2015)

Ref Expression
Assertion 0ram2 R Fin R F : R 0 0 Ramsey F = sup ran F <

Proof

Step Hyp Ref Expression
1 frn F : R 0 ran F 0
2 1 3ad2ant3 R Fin R F : R 0 ran F 0
3 nn0ssz 0
4 2 3 sstrdi R Fin R F : R 0 ran F
5 nn0ssre 0
6 2 5 sstrdi R Fin R F : R 0 ran F
7 simp1 R Fin R F : R 0 R Fin
8 ffn F : R 0 F Fn R
9 8 3ad2ant3 R Fin R F : R 0 F Fn R
10 dffn4 F Fn R F : R onto ran F
11 9 10 sylib R Fin R F : R 0 F : R onto ran F
12 fofi R Fin F : R onto ran F ran F Fin
13 7 11 12 syl2anc R Fin R F : R 0 ran F Fin
14 fdm F : R 0 dom F = R
15 14 3ad2ant3 R Fin R F : R 0 dom F = R
16 simp2 R Fin R F : R 0 R
17 15 16 eqnetrd R Fin R F : R 0 dom F
18 dm0rn0 dom F = ran F =
19 18 necon3bii dom F ran F
20 17 19 sylib R Fin R F : R 0 ran F
21 fimaxre ran F ran F Fin ran F x ran F y ran F y x
22 6 13 20 21 syl3anc R Fin R F : R 0 x ran F y ran F y x
23 ssrexv ran F x ran F y ran F y x x y ran F y x
24 4 22 23 sylc R Fin R F : R 0 x y ran F y x
25 0ram R Fin R F : R 0 x y ran F y x 0 Ramsey F = sup ran F <
26 24 25 mpdan R Fin R F : R 0 0 Ramsey F = sup ran F <