Metamath Proof Explorer


Theorem 0ram

Description: The Ramsey number when M = 0 . (Contributed by Mario Carneiro, 22-Apr-2015)

Ref Expression
Assertion 0ram R V R F : R 0 x y ran F y x 0 Ramsey F = sup ran F <

Proof

Step Hyp Ref Expression
1 eqid a V , i 0 b 𝒫 a | b = i = a V , i 0 b 𝒫 a | b = i
2 0nn0 0 0
3 2 a1i R V R F : R 0 x y ran F y x 0 0
4 simpl1 R V R F : R 0 x y ran F y x R V
5 simpl3 R V R F : R 0 x y ran F y x F : R 0
6 5 frnd R V R F : R 0 x y ran F y x ran F 0
7 nn0ssz 0
8 6 7 sstrdi R V R F : R 0 x y ran F y x ran F
9 5 fdmd R V R F : R 0 x y ran F y x dom F = R
10 simpl2 R V R F : R 0 x y ran F y x R
11 9 10 eqnetrd R V R F : R 0 x y ran F y x dom F
12 dm0rn0 dom F = ran F =
13 12 necon3bii dom F ran F
14 11 13 sylib R V R F : R 0 x y ran F y x ran F
15 simpr R V R F : R 0 x y ran F y x x y ran F y x
16 suprzcl2 ran F ran F x y ran F y x sup ran F < ran F
17 8 14 15 16 syl3anc R V R F : R 0 x y ran F y x sup ran F < ran F
18 6 17 sseldd R V R F : R 0 x y ran F y x sup ran F < 0
19 1 hashbc0 s V s a V , i 0 b 𝒫 a | b = i 0 =
20 19 elv s a V , i 0 b 𝒫 a | b = i 0 =
21 20 feq2i f : s a V , i 0 b 𝒫 a | b = i 0 R f : R
22 21 biimpi f : s a V , i 0 b 𝒫 a | b = i 0 R f : R
23 simprr R V R F : R 0 x y ran F y x sup ran F < s f : R f : R
24 0ex V
25 24 snid
26 ffvelrn f : R f R
27 23 25 26 sylancl R V R F : R 0 x y ran F y x sup ran F < s f : R f R
28 vex s V
29 28 pwid s 𝒫 s
30 29 a1i R V R F : R 0 x y ran F y x sup ran F < s f : R s 𝒫 s
31 5 adantr R V R F : R 0 x y ran F y x sup ran F < s f : R F : R 0
32 31 27 ffvelrnd R V R F : R 0 x y ran F y x sup ran F < s f : R F f 0
33 32 nn0red R V R F : R 0 x y ran F y x sup ran F < s f : R F f
34 33 rexrd R V R F : R 0 x y ran F y x sup ran F < s f : R F f *
35 18 nn0red R V R F : R 0 x y ran F y x sup ran F <
36 35 rexrd R V R F : R 0 x y ran F y x sup ran F < *
37 36 adantr R V R F : R 0 x y ran F y x sup ran F < s f : R sup ran F < *
38 hashxrcl s V s *
39 28 38 mp1i R V R F : R 0 x y ran F y x sup ran F < s f : R s *
40 8 adantr R V R F : R 0 x y ran F y x sup ran F < s f : R ran F
41 15 adantr R V R F : R 0 x y ran F y x sup ran F < s f : R x y ran F y x
42 31 ffnd R V R F : R 0 x y ran F y x sup ran F < s f : R F Fn R
43 fnfvelrn F Fn R f R F f ran F
44 42 27 43 syl2anc R V R F : R 0 x y ran F y x sup ran F < s f : R F f ran F
45 suprzub ran F x y ran F y x F f ran F F f sup ran F <
46 40 41 44 45 syl3anc R V R F : R 0 x y ran F y x sup ran F < s f : R F f sup ran F <
47 simprl R V R F : R 0 x y ran F y x sup ran F < s f : R sup ran F < s
48 34 37 39 46 47 xrletrd R V R F : R 0 x y ran F y x sup ran F < s f : R F f s
49 25 a1i R V R F : R 0 x y ran F y x sup ran F < s f : R
50 fvex f V
51 50 snid f f
52 51 a1i R V R F : R 0 x y ran F y x sup ran F < s f : R f f
53 ffn f : R f Fn
54 elpreima f Fn f -1 f f f
55 23 53 54 3syl R V R F : R 0 x y ran F y x sup ran F < s f : R f -1 f f f
56 49 52 55 mpbir2and R V R F : R 0 x y ran F y x sup ran F < s f : R f -1 f
57 fveq2 c = f F c = F f
58 57 breq1d c = f F c z F f z
59 1 hashbc0 z V z a V , i 0 b 𝒫 a | b = i 0 =
60 59 elv z a V , i 0 b 𝒫 a | b = i 0 =
61 60 sseq1i z a V , i 0 b 𝒫 a | b = i 0 f -1 c f -1 c
62 24 snss f -1 c f -1 c
63 61 62 bitr4i z a V , i 0 b 𝒫 a | b = i 0 f -1 c f -1 c
64 sneq c = f c = f
65 64 imaeq2d c = f f -1 c = f -1 f
66 65 eleq2d c = f f -1 c f -1 f
67 63 66 syl5bb c = f z a V , i 0 b 𝒫 a | b = i 0 f -1 c f -1 f
68 58 67 anbi12d c = f F c z z a V , i 0 b 𝒫 a | b = i 0 f -1 c F f z f -1 f
69 fveq2 z = s z = s
70 69 breq2d z = s F f z F f s
71 70 anbi1d z = s F f z f -1 f F f s f -1 f
72 68 71 rspc2ev f R s 𝒫 s F f s f -1 f c R z 𝒫 s F c z z a V , i 0 b 𝒫 a | b = i 0 f -1 c
73 27 30 48 56 72 syl112anc R V R F : R 0 x y ran F y x sup ran F < s f : R c R z 𝒫 s F c z z a V , i 0 b 𝒫 a | b = i 0 f -1 c
74 22 73 sylanr2 R V R F : R 0 x y ran F y x sup ran F < s f : s a V , i 0 b 𝒫 a | b = i 0 R c R z 𝒫 s F c z z a V , i 0 b 𝒫 a | b = i 0 f -1 c
75 1 3 4 5 18 74 ramub R V R F : R 0 x y ran F y x 0 Ramsey F sup ran F <
76 ffn F : R 0 F Fn R
77 fvelrnb F Fn R sup ran F < ran F c R F c = sup ran F <
78 5 76 77 3syl R V R F : R 0 x y ran F y x sup ran F < ran F c R F c = sup ran F <
79 17 78 mpbid R V R F : R 0 x y ran F y x c R F c = sup ran F <
80 2 a1i R V R F : R 0 x y ran F y x c R F c 0 0
81 simpll1 R V R F : R 0 x y ran F y x c R F c R V
82 simpll3 R V R F : R 0 x y ran F y x c R F c F : R 0
83 nnm1nn0 F c F c 1 0
84 83 ad2antll R V R F : R 0 x y ran F y x c R F c F c 1 0
85 vex c V
86 24 85 f1osn c : 1-1 onto c
87 f1of c : 1-1 onto c c : c
88 86 87 ax-mp c : c
89 simprl R V R F : R 0 x y ran F y x c R F c c R
90 89 snssd R V R F : R 0 x y ran F y x c R F c c R
91 fss c : c c R c : R
92 88 90 91 sylancr R V R F : R 0 x y ran F y x c R F c c : R
93 ovex 1 F c 1 V
94 1 hashbc0 1 F c 1 V 1 F c 1 a V , i 0 b 𝒫 a | b = i 0 =
95 93 94 ax-mp 1 F c 1 a V , i 0 b 𝒫 a | b = i 0 =
96 95 feq2i c : 1 F c 1 a V , i 0 b 𝒫 a | b = i 0 R c : R
97 92 96 sylibr R V R F : R 0 x y ran F y x c R F c c : 1 F c 1 a V , i 0 b 𝒫 a | b = i 0 R
98 60 sseq1i z a V , i 0 b 𝒫 a | b = i 0 c -1 d c -1 d
99 24 snss c -1 d c -1 d
100 98 99 bitr4i z a V , i 0 b 𝒫 a | b = i 0 c -1 d c -1 d
101 fzfid R V R F : R 0 x y ran F y x c R F c d R z 1 F c 1 1 F c 1 Fin
102 simprr R V R F : R 0 x y ran F y x c R F c d R z 1 F c 1 z 1 F c 1
103 ssdomg 1 F c 1 Fin z 1 F c 1 z 1 F c 1
104 101 102 103 sylc R V R F : R 0 x y ran F y x c R F c d R z 1 F c 1 z 1 F c 1
105 101 102 ssfid R V R F : R 0 x y ran F y x c R F c d R z 1 F c 1 z Fin
106 hashdom z Fin 1 F c 1 Fin z 1 F c 1 z 1 F c 1
107 105 101 106 syl2anc R V R F : R 0 x y ran F y x c R F c d R z 1 F c 1 z 1 F c 1 z 1 F c 1
108 104 107 mpbird R V R F : R 0 x y ran F y x c R F c d R z 1 F c 1 z 1 F c 1
109 84 adantr R V R F : R 0 x y ran F y x c R F c d R z 1 F c 1 F c 1 0
110 hashfz1 F c 1 0 1 F c 1 = F c 1
111 109 110 syl R V R F : R 0 x y ran F y x c R F c d R z 1 F c 1 1 F c 1 = F c 1
112 108 111 breqtrd R V R F : R 0 x y ran F y x c R F c d R z 1 F c 1 z F c 1
113 hashcl z Fin z 0
114 105 113 syl R V R F : R 0 x y ran F y x c R F c d R z 1 F c 1 z 0
115 5 ffvelrnda R V R F : R 0 x y ran F y x c R F c 0
116 115 adantrr R V R F : R 0 x y ran F y x c R F c F c 0
117 116 adantr R V R F : R 0 x y ran F y x c R F c d R z 1 F c 1 F c 0
118 nn0ltlem1 z 0 F c 0 z < F c z F c 1
119 114 117 118 syl2anc R V R F : R 0 x y ran F y x c R F c d R z 1 F c 1 z < F c z F c 1
120 112 119 mpbird R V R F : R 0 x y ran F y x c R F c d R z 1 F c 1 z < F c
121 24 85 fvsn c = c
122 f1ofn c : 1-1 onto c c Fn
123 elpreima c Fn c -1 d c d
124 86 122 123 mp2b c -1 d c d
125 124 simprbi c -1 d c d
126 121 125 eqeltrrid c -1 d c d
127 elsni c d c = d
128 126 127 syl c -1 d c = d
129 128 fveq2d c -1 d F c = F d
130 129 breq2d c -1 d z < F c z < F d
131 120 130 syl5ibcom R V R F : R 0 x y ran F y x c R F c d R z 1 F c 1 c -1 d z < F d
132 100 131 syl5bi R V R F : R 0 x y ran F y x c R F c d R z 1 F c 1 z a V , i 0 b 𝒫 a | b = i 0 c -1 d z < F d
133 1 80 81 82 84 97 132 ramlb R V R F : R 0 x y ran F y x c R F c F c 1 < 0 Ramsey F
134 ramubcl 0 0 R V F : R 0 sup ran F < 0 0 Ramsey F sup ran F < 0 Ramsey F 0
135 3 4 5 18 75 134 syl32anc R V R F : R 0 x y ran F y x 0 Ramsey F 0
136 135 adantr R V R F : R 0 x y ran F y x c R F c 0 Ramsey F 0
137 nn0lem1lt F c 0 0 Ramsey F 0 F c 0 Ramsey F F c 1 < 0 Ramsey F
138 116 136 137 syl2anc R V R F : R 0 x y ran F y x c R F c F c 0 Ramsey F F c 1 < 0 Ramsey F
139 133 138 mpbird R V R F : R 0 x y ran F y x c R F c F c 0 Ramsey F
140 139 expr R V R F : R 0 x y ran F y x c R F c F c 0 Ramsey F
141 135 adantr R V R F : R 0 x y ran F y x c R 0 Ramsey F 0
142 141 nn0ge0d R V R F : R 0 x y ran F y x c R 0 0 Ramsey F
143 breq1 F c = 0 F c 0 Ramsey F 0 0 Ramsey F
144 142 143 syl5ibrcom R V R F : R 0 x y ran F y x c R F c = 0 F c 0 Ramsey F
145 elnn0 F c 0 F c F c = 0
146 115 145 sylib R V R F : R 0 x y ran F y x c R F c F c = 0
147 140 144 146 mpjaod R V R F : R 0 x y ran F y x c R F c 0 Ramsey F
148 breq1 F c = sup ran F < F c 0 Ramsey F sup ran F < 0 Ramsey F
149 147 148 syl5ibcom R V R F : R 0 x y ran F y x c R F c = sup ran F < sup ran F < 0 Ramsey F
150 149 rexlimdva R V R F : R 0 x y ran F y x c R F c = sup ran F < sup ran F < 0 Ramsey F
151 79 150 mpd R V R F : R 0 x y ran F y x sup ran F < 0 Ramsey F
152 135 nn0red R V R F : R 0 x y ran F y x 0 Ramsey F
153 152 35 letri3d R V R F : R 0 x y ran F y x 0 Ramsey F = sup ran F < 0 Ramsey F sup ran F < sup ran F < 0 Ramsey F
154 75 151 153 mpbir2and R V R F : R 0 x y ran F y x 0 Ramsey F = sup ran F <