Metamath Proof Explorer


Theorem ramxrcl

Description: The Ramsey number is an extended real number. (This theorem does not imply Ramsey's theorem, unlike ramcl .) (Contributed by Mario Carneiro, 20-Apr-2015)

Ref Expression
Assertion ramxrcl M0RVF:R0MRamseyF*

Proof

Step Hyp Ref Expression
1 nn0ssre 0
2 ressxr *
3 1 2 sstri 0*
4 pnfxr +∞*
5 snssi +∞*+∞*
6 4 5 ax-mp +∞*
7 3 6 unssi 0+∞*
8 ramcl2 M0RVF:R0MRamseyF0+∞
9 7 8 sselid M0RVF:R0MRamseyF*