Metamath Proof Explorer


Theorem ranklim

Description: The rank of a set belongs to a limit ordinal iff the rank of its power set does. (Contributed by NM, 18-Sep-2006)

Ref Expression
Assertion ranklim ( Lim 𝐵 → ( ( rank ‘ 𝐴 ) ∈ 𝐵 ↔ ( rank ‘ 𝒫 𝐴 ) ∈ 𝐵 ) )

Proof

Step Hyp Ref Expression
1 limsuc ( Lim 𝐵 → ( ( rank ‘ 𝐴 ) ∈ 𝐵 ↔ suc ( rank ‘ 𝐴 ) ∈ 𝐵 ) )
2 1 adantl ( ( 𝐴 ∈ V ∧ Lim 𝐵 ) → ( ( rank ‘ 𝐴 ) ∈ 𝐵 ↔ suc ( rank ‘ 𝐴 ) ∈ 𝐵 ) )
3 pweq ( 𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴 )
4 3 fveq2d ( 𝑥 = 𝐴 → ( rank ‘ 𝒫 𝑥 ) = ( rank ‘ 𝒫 𝐴 ) )
5 fveq2 ( 𝑥 = 𝐴 → ( rank ‘ 𝑥 ) = ( rank ‘ 𝐴 ) )
6 suceq ( ( rank ‘ 𝑥 ) = ( rank ‘ 𝐴 ) → suc ( rank ‘ 𝑥 ) = suc ( rank ‘ 𝐴 ) )
7 5 6 syl ( 𝑥 = 𝐴 → suc ( rank ‘ 𝑥 ) = suc ( rank ‘ 𝐴 ) )
8 4 7 eqeq12d ( 𝑥 = 𝐴 → ( ( rank ‘ 𝒫 𝑥 ) = suc ( rank ‘ 𝑥 ) ↔ ( rank ‘ 𝒫 𝐴 ) = suc ( rank ‘ 𝐴 ) ) )
9 vex 𝑥 ∈ V
10 9 rankpw ( rank ‘ 𝒫 𝑥 ) = suc ( rank ‘ 𝑥 )
11 8 10 vtoclg ( 𝐴 ∈ V → ( rank ‘ 𝒫 𝐴 ) = suc ( rank ‘ 𝐴 ) )
12 11 eleq1d ( 𝐴 ∈ V → ( ( rank ‘ 𝒫 𝐴 ) ∈ 𝐵 ↔ suc ( rank ‘ 𝐴 ) ∈ 𝐵 ) )
13 12 adantr ( ( 𝐴 ∈ V ∧ Lim 𝐵 ) → ( ( rank ‘ 𝒫 𝐴 ) ∈ 𝐵 ↔ suc ( rank ‘ 𝐴 ) ∈ 𝐵 ) )
14 2 13 bitr4d ( ( 𝐴 ∈ V ∧ Lim 𝐵 ) → ( ( rank ‘ 𝐴 ) ∈ 𝐵 ↔ ( rank ‘ 𝒫 𝐴 ) ∈ 𝐵 ) )
15 fvprc ( ¬ 𝐴 ∈ V → ( rank ‘ 𝐴 ) = ∅ )
16 pwexb ( 𝐴 ∈ V ↔ 𝒫 𝐴 ∈ V )
17 fvprc ( ¬ 𝒫 𝐴 ∈ V → ( rank ‘ 𝒫 𝐴 ) = ∅ )
18 16 17 sylnbi ( ¬ 𝐴 ∈ V → ( rank ‘ 𝒫 𝐴 ) = ∅ )
19 15 18 eqtr4d ( ¬ 𝐴 ∈ V → ( rank ‘ 𝐴 ) = ( rank ‘ 𝒫 𝐴 ) )
20 19 eleq1d ( ¬ 𝐴 ∈ V → ( ( rank ‘ 𝐴 ) ∈ 𝐵 ↔ ( rank ‘ 𝒫 𝐴 ) ∈ 𝐵 ) )
21 20 adantr ( ( ¬ 𝐴 ∈ V ∧ Lim 𝐵 ) → ( ( rank ‘ 𝐴 ) ∈ 𝐵 ↔ ( rank ‘ 𝒫 𝐴 ) ∈ 𝐵 ) )
22 14 21 pm2.61ian ( Lim 𝐵 → ( ( rank ‘ 𝐴 ) ∈ 𝐵 ↔ ( rank ‘ 𝒫 𝐴 ) ∈ 𝐵 ) )