| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rankidn |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ¬ 𝐴 ∈ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) |
| 2 |
|
rankon |
⊢ ( rank ‘ 𝐴 ) ∈ On |
| 3 |
|
r1suc |
⊢ ( ( rank ‘ 𝐴 ) ∈ On → ( 𝑅1 ‘ suc ( rank ‘ 𝐴 ) ) = 𝒫 ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) |
| 4 |
2 3
|
ax-mp |
⊢ ( 𝑅1 ‘ suc ( rank ‘ 𝐴 ) ) = 𝒫 ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) |
| 5 |
4
|
eleq2i |
⊢ ( 𝒫 𝐴 ∈ ( 𝑅1 ‘ suc ( rank ‘ 𝐴 ) ) ↔ 𝒫 𝐴 ∈ 𝒫 ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) |
| 6 |
|
elpwi |
⊢ ( 𝒫 𝐴 ∈ 𝒫 ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) → 𝒫 𝐴 ⊆ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) |
| 7 |
|
pwidg |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → 𝐴 ∈ 𝒫 𝐴 ) |
| 8 |
|
ssel |
⊢ ( 𝒫 𝐴 ⊆ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) → ( 𝐴 ∈ 𝒫 𝐴 → 𝐴 ∈ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) ) |
| 9 |
6 7 8
|
syl2imc |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ( 𝒫 𝐴 ∈ 𝒫 ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) → 𝐴 ∈ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) ) |
| 10 |
5 9
|
biimtrid |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ( 𝒫 𝐴 ∈ ( 𝑅1 ‘ suc ( rank ‘ 𝐴 ) ) → 𝐴 ∈ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) ) |
| 11 |
1 10
|
mtod |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ¬ 𝒫 𝐴 ∈ ( 𝑅1 ‘ suc ( rank ‘ 𝐴 ) ) ) |
| 12 |
|
r1rankidb |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → 𝐴 ⊆ ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) |
| 13 |
12
|
sspwd |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → 𝒫 𝐴 ⊆ 𝒫 ( 𝑅1 ‘ ( rank ‘ 𝐴 ) ) ) |
| 14 |
13 4
|
sseqtrrdi |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → 𝒫 𝐴 ⊆ ( 𝑅1 ‘ suc ( rank ‘ 𝐴 ) ) ) |
| 15 |
|
fvex |
⊢ ( 𝑅1 ‘ suc ( rank ‘ 𝐴 ) ) ∈ V |
| 16 |
15
|
elpw2 |
⊢ ( 𝒫 𝐴 ∈ 𝒫 ( 𝑅1 ‘ suc ( rank ‘ 𝐴 ) ) ↔ 𝒫 𝐴 ⊆ ( 𝑅1 ‘ suc ( rank ‘ 𝐴 ) ) ) |
| 17 |
14 16
|
sylibr |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → 𝒫 𝐴 ∈ 𝒫 ( 𝑅1 ‘ suc ( rank ‘ 𝐴 ) ) ) |
| 18 |
2
|
onsuci |
⊢ suc ( rank ‘ 𝐴 ) ∈ On |
| 19 |
|
r1suc |
⊢ ( suc ( rank ‘ 𝐴 ) ∈ On → ( 𝑅1 ‘ suc suc ( rank ‘ 𝐴 ) ) = 𝒫 ( 𝑅1 ‘ suc ( rank ‘ 𝐴 ) ) ) |
| 20 |
18 19
|
ax-mp |
⊢ ( 𝑅1 ‘ suc suc ( rank ‘ 𝐴 ) ) = 𝒫 ( 𝑅1 ‘ suc ( rank ‘ 𝐴 ) ) |
| 21 |
17 20
|
eleqtrrdi |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → 𝒫 𝐴 ∈ ( 𝑅1 ‘ suc suc ( rank ‘ 𝐴 ) ) ) |
| 22 |
|
pwwf |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ↔ 𝒫 𝐴 ∈ ∪ ( 𝑅1 “ On ) ) |
| 23 |
|
rankr1c |
⊢ ( 𝒫 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ( suc ( rank ‘ 𝐴 ) = ( rank ‘ 𝒫 𝐴 ) ↔ ( ¬ 𝒫 𝐴 ∈ ( 𝑅1 ‘ suc ( rank ‘ 𝐴 ) ) ∧ 𝒫 𝐴 ∈ ( 𝑅1 ‘ suc suc ( rank ‘ 𝐴 ) ) ) ) ) |
| 24 |
22 23
|
sylbi |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ( suc ( rank ‘ 𝐴 ) = ( rank ‘ 𝒫 𝐴 ) ↔ ( ¬ 𝒫 𝐴 ∈ ( 𝑅1 ‘ suc ( rank ‘ 𝐴 ) ) ∧ 𝒫 𝐴 ∈ ( 𝑅1 ‘ suc suc ( rank ‘ 𝐴 ) ) ) ) ) |
| 25 |
11 21 24
|
mpbir2and |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → suc ( rank ‘ 𝐴 ) = ( rank ‘ 𝒫 𝐴 ) ) |
| 26 |
25
|
eqcomd |
⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ( rank ‘ 𝒫 𝐴 ) = suc ( rank ‘ 𝐴 ) ) |