| Step |
Hyp |
Ref |
Expression |
| 1 |
|
absid |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( abs ‘ 𝐴 ) = 𝐴 ) |
| 2 |
1
|
eqcomd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → 𝐴 = ( abs ‘ 𝐴 ) ) |
| 3 |
|
0re |
⊢ 0 ∈ ℝ |
| 4 |
|
ltnle |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ∈ ℝ ) → ( 𝐴 < 0 ↔ ¬ 0 ≤ 𝐴 ) ) |
| 5 |
|
ltle |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ∈ ℝ ) → ( 𝐴 < 0 → 𝐴 ≤ 0 ) ) |
| 6 |
4 5
|
sylbird |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ∈ ℝ ) → ( ¬ 0 ≤ 𝐴 → 𝐴 ≤ 0 ) ) |
| 7 |
3 6
|
mpan2 |
⊢ ( 𝐴 ∈ ℝ → ( ¬ 0 ≤ 𝐴 → 𝐴 ≤ 0 ) ) |
| 8 |
7
|
imdistani |
⊢ ( ( 𝐴 ∈ ℝ ∧ ¬ 0 ≤ 𝐴 ) → ( 𝐴 ∈ ℝ ∧ 𝐴 ≤ 0 ) ) |
| 9 |
|
absnid |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≤ 0 ) → ( abs ‘ 𝐴 ) = - 𝐴 ) |
| 10 |
8 9
|
syl |
⊢ ( ( 𝐴 ∈ ℝ ∧ ¬ 0 ≤ 𝐴 ) → ( abs ‘ 𝐴 ) = - 𝐴 ) |
| 11 |
10
|
eqcomd |
⊢ ( ( 𝐴 ∈ ℝ ∧ ¬ 0 ≤ 𝐴 ) → - 𝐴 = ( abs ‘ 𝐴 ) ) |
| 12 |
2 11
|
ifeqda |
⊢ ( 𝐴 ∈ ℝ → if ( 0 ≤ 𝐴 , 𝐴 , - 𝐴 ) = ( abs ‘ 𝐴 ) ) |
| 13 |
12
|
eqcomd |
⊢ ( 𝐴 ∈ ℝ → ( abs ‘ 𝐴 ) = if ( 0 ≤ 𝐴 , 𝐴 , - 𝐴 ) ) |