| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rexr | ⊢ ( 𝐴  ∈  ℝ  →  𝐴  ∈  ℝ* ) | 
						
							| 2 |  | sgnval | ⊢ ( 𝐴  ∈  ℝ*  →  ( sgn ‘ 𝐴 )  =  if ( 𝐴  =  0 ,  0 ,  if ( 𝐴  <  0 ,  - 1 ,  1 ) ) ) | 
						
							| 3 | 1 2 | syl | ⊢ ( 𝐴  ∈  ℝ  →  ( sgn ‘ 𝐴 )  =  if ( 𝐴  =  0 ,  0 ,  if ( 𝐴  <  0 ,  - 1 ,  1 ) ) ) | 
						
							| 4 | 3 | oveq1d | ⊢ ( 𝐴  ∈  ℝ  →  ( ( sgn ‘ 𝐴 )  ·  𝐴 )  =  ( if ( 𝐴  =  0 ,  0 ,  if ( 𝐴  <  0 ,  - 1 ,  1 ) )  ·  𝐴 ) ) | 
						
							| 5 |  | ovif | ⊢ ( if ( 𝐴  =  0 ,  0 ,  if ( 𝐴  <  0 ,  - 1 ,  1 ) )  ·  𝐴 )  =  if ( 𝐴  =  0 ,  ( 0  ·  𝐴 ) ,  ( if ( 𝐴  <  0 ,  - 1 ,  1 )  ·  𝐴 ) ) | 
						
							| 6 |  | ovif | ⊢ ( if ( 𝐴  <  0 ,  - 1 ,  1 )  ·  𝐴 )  =  if ( 𝐴  <  0 ,  ( - 1  ·  𝐴 ) ,  ( 1  ·  𝐴 ) ) | 
						
							| 7 |  | ifeq2 | ⊢ ( ( if ( 𝐴  <  0 ,  - 1 ,  1 )  ·  𝐴 )  =  if ( 𝐴  <  0 ,  ( - 1  ·  𝐴 ) ,  ( 1  ·  𝐴 ) )  →  if ( 𝐴  =  0 ,  ( 0  ·  𝐴 ) ,  ( if ( 𝐴  <  0 ,  - 1 ,  1 )  ·  𝐴 ) )  =  if ( 𝐴  =  0 ,  ( 0  ·  𝐴 ) ,  if ( 𝐴  <  0 ,  ( - 1  ·  𝐴 ) ,  ( 1  ·  𝐴 ) ) ) ) | 
						
							| 8 | 6 7 | ax-mp | ⊢ if ( 𝐴  =  0 ,  ( 0  ·  𝐴 ) ,  ( if ( 𝐴  <  0 ,  - 1 ,  1 )  ·  𝐴 ) )  =  if ( 𝐴  =  0 ,  ( 0  ·  𝐴 ) ,  if ( 𝐴  <  0 ,  ( - 1  ·  𝐴 ) ,  ( 1  ·  𝐴 ) ) ) | 
						
							| 9 | 5 8 | eqtri | ⊢ ( if ( 𝐴  =  0 ,  0 ,  if ( 𝐴  <  0 ,  - 1 ,  1 ) )  ·  𝐴 )  =  if ( 𝐴  =  0 ,  ( 0  ·  𝐴 ) ,  if ( 𝐴  <  0 ,  ( - 1  ·  𝐴 ) ,  ( 1  ·  𝐴 ) ) ) | 
						
							| 10 |  | mul02lem2 | ⊢ ( 𝐴  ∈  ℝ  →  ( 0  ·  𝐴 )  =  0 ) | 
						
							| 11 | 10 | adantr | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐴  =  0 )  →  ( 0  ·  𝐴 )  =  0 ) | 
						
							| 12 |  | simpr | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐴  =  0 )  →  𝐴  =  0 ) | 
						
							| 13 | 12 | abs00bd | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐴  =  0 )  →  ( abs ‘ 𝐴 )  =  0 ) | 
						
							| 14 | 11 13 | eqtr4d | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐴  =  0 )  →  ( 0  ·  𝐴 )  =  ( abs ‘ 𝐴 ) ) | 
						
							| 15 |  | recn | ⊢ ( 𝐴  ∈  ℝ  →  𝐴  ∈  ℂ ) | 
						
							| 16 | 15 | mulm1d | ⊢ ( 𝐴  ∈  ℝ  →  ( - 1  ·  𝐴 )  =  - 𝐴 ) | 
						
							| 17 | 15 | mullidd | ⊢ ( 𝐴  ∈  ℝ  →  ( 1  ·  𝐴 )  =  𝐴 ) | 
						
							| 18 | 16 17 | ifeq12d | ⊢ ( 𝐴  ∈  ℝ  →  if ( 𝐴  <  0 ,  ( - 1  ·  𝐴 ) ,  ( 1  ·  𝐴 ) )  =  if ( 𝐴  <  0 ,  - 𝐴 ,  𝐴 ) ) | 
						
							| 19 |  | reabsifneg | ⊢ ( 𝐴  ∈  ℝ  →  ( abs ‘ 𝐴 )  =  if ( 𝐴  <  0 ,  - 𝐴 ,  𝐴 ) ) | 
						
							| 20 | 18 19 | eqtr4d | ⊢ ( 𝐴  ∈  ℝ  →  if ( 𝐴  <  0 ,  ( - 1  ·  𝐴 ) ,  ( 1  ·  𝐴 ) )  =  ( abs ‘ 𝐴 ) ) | 
						
							| 21 | 20 | adantr | ⊢ ( ( 𝐴  ∈  ℝ  ∧  ¬  𝐴  =  0 )  →  if ( 𝐴  <  0 ,  ( - 1  ·  𝐴 ) ,  ( 1  ·  𝐴 ) )  =  ( abs ‘ 𝐴 ) ) | 
						
							| 22 | 14 21 | ifeqda | ⊢ ( 𝐴  ∈  ℝ  →  if ( 𝐴  =  0 ,  ( 0  ·  𝐴 ) ,  if ( 𝐴  <  0 ,  ( - 1  ·  𝐴 ) ,  ( 1  ·  𝐴 ) ) )  =  ( abs ‘ 𝐴 ) ) | 
						
							| 23 | 9 22 | eqtrid | ⊢ ( 𝐴  ∈  ℝ  →  ( if ( 𝐴  =  0 ,  0 ,  if ( 𝐴  <  0 ,  - 1 ,  1 ) )  ·  𝐴 )  =  ( abs ‘ 𝐴 ) ) | 
						
							| 24 | 4 23 | eqtr2d | ⊢ ( 𝐴  ∈  ℝ  →  ( abs ‘ 𝐴 )  =  ( ( sgn ‘ 𝐴 )  ·  𝐴 ) ) |