| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rexr |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℝ* ) |
| 2 |
|
sgnval |
⊢ ( 𝐴 ∈ ℝ* → ( sgn ‘ 𝐴 ) = if ( 𝐴 = 0 , 0 , if ( 𝐴 < 0 , - 1 , 1 ) ) ) |
| 3 |
1 2
|
syl |
⊢ ( 𝐴 ∈ ℝ → ( sgn ‘ 𝐴 ) = if ( 𝐴 = 0 , 0 , if ( 𝐴 < 0 , - 1 , 1 ) ) ) |
| 4 |
3
|
oveq1d |
⊢ ( 𝐴 ∈ ℝ → ( ( sgn ‘ 𝐴 ) · 𝐴 ) = ( if ( 𝐴 = 0 , 0 , if ( 𝐴 < 0 , - 1 , 1 ) ) · 𝐴 ) ) |
| 5 |
|
ovif |
⊢ ( if ( 𝐴 = 0 , 0 , if ( 𝐴 < 0 , - 1 , 1 ) ) · 𝐴 ) = if ( 𝐴 = 0 , ( 0 · 𝐴 ) , ( if ( 𝐴 < 0 , - 1 , 1 ) · 𝐴 ) ) |
| 6 |
|
ovif |
⊢ ( if ( 𝐴 < 0 , - 1 , 1 ) · 𝐴 ) = if ( 𝐴 < 0 , ( - 1 · 𝐴 ) , ( 1 · 𝐴 ) ) |
| 7 |
|
ifeq2 |
⊢ ( ( if ( 𝐴 < 0 , - 1 , 1 ) · 𝐴 ) = if ( 𝐴 < 0 , ( - 1 · 𝐴 ) , ( 1 · 𝐴 ) ) → if ( 𝐴 = 0 , ( 0 · 𝐴 ) , ( if ( 𝐴 < 0 , - 1 , 1 ) · 𝐴 ) ) = if ( 𝐴 = 0 , ( 0 · 𝐴 ) , if ( 𝐴 < 0 , ( - 1 · 𝐴 ) , ( 1 · 𝐴 ) ) ) ) |
| 8 |
6 7
|
ax-mp |
⊢ if ( 𝐴 = 0 , ( 0 · 𝐴 ) , ( if ( 𝐴 < 0 , - 1 , 1 ) · 𝐴 ) ) = if ( 𝐴 = 0 , ( 0 · 𝐴 ) , if ( 𝐴 < 0 , ( - 1 · 𝐴 ) , ( 1 · 𝐴 ) ) ) |
| 9 |
5 8
|
eqtri |
⊢ ( if ( 𝐴 = 0 , 0 , if ( 𝐴 < 0 , - 1 , 1 ) ) · 𝐴 ) = if ( 𝐴 = 0 , ( 0 · 𝐴 ) , if ( 𝐴 < 0 , ( - 1 · 𝐴 ) , ( 1 · 𝐴 ) ) ) |
| 10 |
|
mul02lem2 |
⊢ ( 𝐴 ∈ ℝ → ( 0 · 𝐴 ) = 0 ) |
| 11 |
10
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 = 0 ) → ( 0 · 𝐴 ) = 0 ) |
| 12 |
|
simpr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 = 0 ) → 𝐴 = 0 ) |
| 13 |
12
|
abs00bd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 = 0 ) → ( abs ‘ 𝐴 ) = 0 ) |
| 14 |
11 13
|
eqtr4d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 = 0 ) → ( 0 · 𝐴 ) = ( abs ‘ 𝐴 ) ) |
| 15 |
|
recn |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) |
| 16 |
15
|
mulm1d |
⊢ ( 𝐴 ∈ ℝ → ( - 1 · 𝐴 ) = - 𝐴 ) |
| 17 |
15
|
mullidd |
⊢ ( 𝐴 ∈ ℝ → ( 1 · 𝐴 ) = 𝐴 ) |
| 18 |
16 17
|
ifeq12d |
⊢ ( 𝐴 ∈ ℝ → if ( 𝐴 < 0 , ( - 1 · 𝐴 ) , ( 1 · 𝐴 ) ) = if ( 𝐴 < 0 , - 𝐴 , 𝐴 ) ) |
| 19 |
|
reabsifneg |
⊢ ( 𝐴 ∈ ℝ → ( abs ‘ 𝐴 ) = if ( 𝐴 < 0 , - 𝐴 , 𝐴 ) ) |
| 20 |
18 19
|
eqtr4d |
⊢ ( 𝐴 ∈ ℝ → if ( 𝐴 < 0 , ( - 1 · 𝐴 ) , ( 1 · 𝐴 ) ) = ( abs ‘ 𝐴 ) ) |
| 21 |
20
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ ∧ ¬ 𝐴 = 0 ) → if ( 𝐴 < 0 , ( - 1 · 𝐴 ) , ( 1 · 𝐴 ) ) = ( abs ‘ 𝐴 ) ) |
| 22 |
14 21
|
ifeqda |
⊢ ( 𝐴 ∈ ℝ → if ( 𝐴 = 0 , ( 0 · 𝐴 ) , if ( 𝐴 < 0 , ( - 1 · 𝐴 ) , ( 1 · 𝐴 ) ) ) = ( abs ‘ 𝐴 ) ) |
| 23 |
9 22
|
eqtrid |
⊢ ( 𝐴 ∈ ℝ → ( if ( 𝐴 = 0 , 0 , if ( 𝐴 < 0 , - 1 , 1 ) ) · 𝐴 ) = ( abs ‘ 𝐴 ) ) |
| 24 |
4 23
|
eqtr2d |
⊢ ( 𝐴 ∈ ℝ → ( abs ‘ 𝐴 ) = ( ( sgn ‘ 𝐴 ) · 𝐴 ) ) |