| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rexr |  |-  ( A e. RR -> A e. RR* ) | 
						
							| 2 |  | sgnval |  |-  ( A e. RR* -> ( sgn ` A ) = if ( A = 0 , 0 , if ( A < 0 , -u 1 , 1 ) ) ) | 
						
							| 3 | 1 2 | syl |  |-  ( A e. RR -> ( sgn ` A ) = if ( A = 0 , 0 , if ( A < 0 , -u 1 , 1 ) ) ) | 
						
							| 4 | 3 | oveq1d |  |-  ( A e. RR -> ( ( sgn ` A ) x. A ) = ( if ( A = 0 , 0 , if ( A < 0 , -u 1 , 1 ) ) x. A ) ) | 
						
							| 5 |  | ovif |  |-  ( if ( A = 0 , 0 , if ( A < 0 , -u 1 , 1 ) ) x. A ) = if ( A = 0 , ( 0 x. A ) , ( if ( A < 0 , -u 1 , 1 ) x. A ) ) | 
						
							| 6 |  | ovif |  |-  ( if ( A < 0 , -u 1 , 1 ) x. A ) = if ( A < 0 , ( -u 1 x. A ) , ( 1 x. A ) ) | 
						
							| 7 |  | ifeq2 |  |-  ( ( if ( A < 0 , -u 1 , 1 ) x. A ) = if ( A < 0 , ( -u 1 x. A ) , ( 1 x. A ) ) -> if ( A = 0 , ( 0 x. A ) , ( if ( A < 0 , -u 1 , 1 ) x. A ) ) = if ( A = 0 , ( 0 x. A ) , if ( A < 0 , ( -u 1 x. A ) , ( 1 x. A ) ) ) ) | 
						
							| 8 | 6 7 | ax-mp |  |-  if ( A = 0 , ( 0 x. A ) , ( if ( A < 0 , -u 1 , 1 ) x. A ) ) = if ( A = 0 , ( 0 x. A ) , if ( A < 0 , ( -u 1 x. A ) , ( 1 x. A ) ) ) | 
						
							| 9 | 5 8 | eqtri |  |-  ( if ( A = 0 , 0 , if ( A < 0 , -u 1 , 1 ) ) x. A ) = if ( A = 0 , ( 0 x. A ) , if ( A < 0 , ( -u 1 x. A ) , ( 1 x. A ) ) ) | 
						
							| 10 |  | mul02lem2 |  |-  ( A e. RR -> ( 0 x. A ) = 0 ) | 
						
							| 11 | 10 | adantr |  |-  ( ( A e. RR /\ A = 0 ) -> ( 0 x. A ) = 0 ) | 
						
							| 12 |  | simpr |  |-  ( ( A e. RR /\ A = 0 ) -> A = 0 ) | 
						
							| 13 | 12 | abs00bd |  |-  ( ( A e. RR /\ A = 0 ) -> ( abs ` A ) = 0 ) | 
						
							| 14 | 11 13 | eqtr4d |  |-  ( ( A e. RR /\ A = 0 ) -> ( 0 x. A ) = ( abs ` A ) ) | 
						
							| 15 |  | recn |  |-  ( A e. RR -> A e. CC ) | 
						
							| 16 | 15 | mulm1d |  |-  ( A e. RR -> ( -u 1 x. A ) = -u A ) | 
						
							| 17 | 15 | mullidd |  |-  ( A e. RR -> ( 1 x. A ) = A ) | 
						
							| 18 | 16 17 | ifeq12d |  |-  ( A e. RR -> if ( A < 0 , ( -u 1 x. A ) , ( 1 x. A ) ) = if ( A < 0 , -u A , A ) ) | 
						
							| 19 |  | reabsifneg |  |-  ( A e. RR -> ( abs ` A ) = if ( A < 0 , -u A , A ) ) | 
						
							| 20 | 18 19 | eqtr4d |  |-  ( A e. RR -> if ( A < 0 , ( -u 1 x. A ) , ( 1 x. A ) ) = ( abs ` A ) ) | 
						
							| 21 | 20 | adantr |  |-  ( ( A e. RR /\ -. A = 0 ) -> if ( A < 0 , ( -u 1 x. A ) , ( 1 x. A ) ) = ( abs ` A ) ) | 
						
							| 22 | 14 21 | ifeqda |  |-  ( A e. RR -> if ( A = 0 , ( 0 x. A ) , if ( A < 0 , ( -u 1 x. A ) , ( 1 x. A ) ) ) = ( abs ` A ) ) | 
						
							| 23 | 9 22 | eqtrid |  |-  ( A e. RR -> ( if ( A = 0 , 0 , if ( A < 0 , -u 1 , 1 ) ) x. A ) = ( abs ` A ) ) | 
						
							| 24 | 4 23 | eqtr2d |  |-  ( A e. RR -> ( abs ` A ) = ( ( sgn ` A ) x. A ) ) |