| Step | Hyp | Ref | Expression | 
						
							| 1 |  | recgt1i | ⊢ ( ( 𝐴  ∈  ℝ  ∧  1  <  𝐴 )  →  ( 0  <  ( 1  /  𝐴 )  ∧  ( 1  /  𝐴 )  <  1 ) ) | 
						
							| 2 | 1 | simprd | ⊢ ( ( 𝐴  ∈  ℝ  ∧  1  <  𝐴 )  →  ( 1  /  𝐴 )  <  1 ) | 
						
							| 3 | 1 | simpld | ⊢ ( ( 𝐴  ∈  ℝ  ∧  1  <  𝐴 )  →  0  <  ( 1  /  𝐴 ) ) | 
						
							| 4 |  | zgt0ge1 | ⊢ ( ( 1  /  𝐴 )  ∈  ℤ  →  ( 0  <  ( 1  /  𝐴 )  ↔  1  ≤  ( 1  /  𝐴 ) ) ) | 
						
							| 5 | 3 4 | syl5ibcom | ⊢ ( ( 𝐴  ∈  ℝ  ∧  1  <  𝐴 )  →  ( ( 1  /  𝐴 )  ∈  ℤ  →  1  ≤  ( 1  /  𝐴 ) ) ) | 
						
							| 6 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 7 |  | 0lt1 | ⊢ 0  <  1 | 
						
							| 8 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 9 |  | lttr | ⊢ ( ( 0  ∈  ℝ  ∧  1  ∈  ℝ  ∧  𝐴  ∈  ℝ )  →  ( ( 0  <  1  ∧  1  <  𝐴 )  →  0  <  𝐴 ) ) | 
						
							| 10 | 8 6 9 | mp3an12 | ⊢ ( 𝐴  ∈  ℝ  →  ( ( 0  <  1  ∧  1  <  𝐴 )  →  0  <  𝐴 ) ) | 
						
							| 11 | 7 10 | mpani | ⊢ ( 𝐴  ∈  ℝ  →  ( 1  <  𝐴  →  0  <  𝐴 ) ) | 
						
							| 12 | 11 | imdistani | ⊢ ( ( 𝐴  ∈  ℝ  ∧  1  <  𝐴 )  →  ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 ) ) | 
						
							| 13 |  | gt0ne0 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  0  <  𝐴 )  →  𝐴  ≠  0 ) | 
						
							| 14 | 12 13 | syl | ⊢ ( ( 𝐴  ∈  ℝ  ∧  1  <  𝐴 )  →  𝐴  ≠  0 ) | 
						
							| 15 |  | rereccl | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐴  ≠  0 )  →  ( 1  /  𝐴 )  ∈  ℝ ) | 
						
							| 16 | 14 15 | syldan | ⊢ ( ( 𝐴  ∈  ℝ  ∧  1  <  𝐴 )  →  ( 1  /  𝐴 )  ∈  ℝ ) | 
						
							| 17 |  | lenlt | ⊢ ( ( 1  ∈  ℝ  ∧  ( 1  /  𝐴 )  ∈  ℝ )  →  ( 1  ≤  ( 1  /  𝐴 )  ↔  ¬  ( 1  /  𝐴 )  <  1 ) ) | 
						
							| 18 | 6 16 17 | sylancr | ⊢ ( ( 𝐴  ∈  ℝ  ∧  1  <  𝐴 )  →  ( 1  ≤  ( 1  /  𝐴 )  ↔  ¬  ( 1  /  𝐴 )  <  1 ) ) | 
						
							| 19 | 5 18 | sylibd | ⊢ ( ( 𝐴  ∈  ℝ  ∧  1  <  𝐴 )  →  ( ( 1  /  𝐴 )  ∈  ℤ  →  ¬  ( 1  /  𝐴 )  <  1 ) ) | 
						
							| 20 | 2 19 | mt2d | ⊢ ( ( 𝐴  ∈  ℝ  ∧  1  <  𝐴 )  →  ¬  ( 1  /  𝐴 )  ∈  ℤ ) |