Metamath Proof Explorer
Description: Move LHS of a sum into RHS of a (real) difference. Version of
mvlladdd with real subtraction. (Contributed by Steven Nguyen, 8-Jan-2023)
|
|
Ref |
Expression |
|
Hypotheses |
reladdrsub.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
|
|
reladdrsub.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
|
|
reladdrsub.3 |
⊢ ( 𝜑 → ( 𝐴 + 𝐵 ) = 𝐶 ) |
|
Assertion |
reladdrsub |
⊢ ( 𝜑 → 𝐵 = ( 𝐶 −ℝ 𝐴 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
reladdrsub.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
2 |
|
reladdrsub.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
3 |
|
reladdrsub.3 |
⊢ ( 𝜑 → ( 𝐴 + 𝐵 ) = 𝐶 ) |
4 |
1 2
|
readdcld |
⊢ ( 𝜑 → ( 𝐴 + 𝐵 ) ∈ ℝ ) |
5 |
3 4
|
eqeltrrd |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
6 |
|
resubadd |
⊢ ( ( 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐶 −ℝ 𝐴 ) = 𝐵 ↔ ( 𝐴 + 𝐵 ) = 𝐶 ) ) |
7 |
3 6
|
syl5ibrcom |
⊢ ( 𝜑 → ( ( 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐶 −ℝ 𝐴 ) = 𝐵 ) ) |
8 |
5 1 2 7
|
mp3and |
⊢ ( 𝜑 → ( 𝐶 −ℝ 𝐴 ) = 𝐵 ) |
9 |
8
|
eqcomd |
⊢ ( 𝜑 → 𝐵 = ( 𝐶 −ℝ 𝐴 ) ) |